×

Adaptive energy preserving methods for partial differential equations. (English) Zbl 1395.65062

Summary: A framework for constructing integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The approach can be used with both finite difference and partition of unity methods, thereby including finite element methods. The schemes are then extended to accommodate \(r\)-, \(h\)- and \(p\)-adaptivity. To illustrate the ideas, the method is applied to the Korteweg-de Vries equation and the sine-Gordon equation. Results from numerical experiments are presented.

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Courant, R; Friedrichs, K; Lewy, H, Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann., 100, 32-74, (1928) · JFM 54.0486.01 · doi:10.1007/BF01448839
[2] Furihata, D, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math., 134, 37-57, (2001) · Zbl 0989.65099 · doi:10.1016/S0377-0427(00)00527-6
[3] Li, S; Vu-Quoc, L, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 1839-1875, (1995) · Zbl 0847.65062 · doi:10.1137/0732083
[4] Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Second edition Interscience Tracts in Pure and Applied Mathematics, vol. 4. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney (1967) · Zbl 0155.47502
[5] Christiansen, SH; Munthe-Kaas, HZ; Owren, B, Topics in structure-preserving discretization, Acta Numer., 20, 1-119, (2011) · Zbl 1233.65087 · doi:10.1017/S096249291100002X
[6] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31 of Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2006). Structure-preserving algorithms for ordinary differential equations · Zbl 1094.65125
[7] Gonzalez, O, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6, 449-467, (1996) · Zbl 0866.58030 · doi:10.1007/BF02440162
[8] Quispel, GRW; McLaren, DI, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 41, 045206, (2008) · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
[9] Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2011). A structure-preserving numerical method for partial differential equations · Zbl 1227.65094
[10] Celledoni, E; Grimm, V; McLachlan, RI; McLaren, DI; O’Neale, D; Owren, B; Quispel, GRW, Preserving energy resp. dissipation in numerical PDEs using the average vector field method, J. Comput. Phys., 231, 6770-6789, (2012) · Zbl 1284.65184 · doi:10.1016/j.jcp.2012.06.022
[11] Dahlby, M; Owren, B, A general framework for deriving integral preserving numerical methods for pdes, SIAM J. Sci. Comput., 33, 2318-2340, (2011) · Zbl 1246.65240 · doi:10.1137/100810174
[12] Yaguchi, T; Matsuo, T; Sugihara, M, An extension of the discrete variational method to nonuniform grids, J. Comput. Phys., 229, 4382-4423, (2010) · Zbl 1190.65128 · doi:10.1016/j.jcp.2010.02.018
[13] Yaguchi, T; Matsuo, T; Sugihara, M, The discrete variational derivative method based on discrete differential forms, J. Comput. Phys., 231, 3963-3986, (2012) · Zbl 1457.65066 · doi:10.1016/j.jcp.2012.01.035
[14] Miyatake, Y; Matsuo, T, A note on the adaptive conservative/dissipative discretization for evolutionary partial differential equations, J. Comput. Appl. Math., 274, 79-87, (2015) · Zbl 1296.65113 · doi:10.1016/j.cam.2014.06.027
[15] Huang, W., Russell, R.: Adaptive Moving Mesh Methods, vol. 174 of Springer Series in Applied Mathematical Sciences. Springer-Verlag, New York (2010)
[16] Zegeling, PA, R-refinement for evolutionary PDEs with finite elements or finite differences, Appl. Numer. Math., 26, 97-104, (1998) · Zbl 0891.65101 · doi:10.1016/S0168-9274(97)00086-X
[17] Lee, T; Baines, M; Langdon, S, A finite difference moving mesh method based on conservation for moving boundary problems, J. Comput. Appl. Math., 288, 1-17, (2015) · Zbl 1320.65118 · doi:10.1016/j.cam.2015.03.032
[18] Babus̆ka, I; Guo, B, The h, p and h-p version of the finite element method; basis theory and applications, Adv. Eng. Softw., 15, 159-174, (1992) · Zbl 0769.65078 · doi:10.1016/0965-9978(92)90097-Y
[19] McLachlan, RI; Quispel, GRW; Robidoux, N, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357, 1021-1045, (1999) · Zbl 0933.65143 · doi:10.1098/rsta.1999.0363
[20] Melenk, J; Babus̆ka, I, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314, (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[21] Furihata, D, Finite difference schemes for u/t = (∂/x)αG/u that inherit energy conservation or dissipation property, J. Comput. Phys., 156, 181-205, (1999) · Zbl 0945.65103 · doi:10.1006/jcph.1999.6377
[22] Norton, RA; McLaren, DI; Quispel, GRW; Stern, A; Zanna, A, Projection methods and discrete gradient methods for preserving first integrals of odes, Discrete Contin. Dyn. Syst., 35, 2079-2098, (2015) · Zbl 1302.65063 · doi:10.3934/dcds.2015.35.2079
[23] Bauer, M; Joshi, S; Modin, K, Diffeomorphic density matching by optimal information transport, SIAM J. Imaging Sci., 8, 1718-1751, (2015) · Zbl 1326.58010 · doi:10.1137/151006238
[24] Huang, W; Russell, R, Adaptive mesh movement - the MMPDE approach and its applications, J. Comput. Appl. Math., 128, 383-398, (2001) · Zbl 0971.65088 · doi:10.1016/S0377-0427(00)00520-3
[25] Budd, CJ; Huang, W; Russell, RD, Adaptivity with moving grids, Acta Numer., 18, 111-241, (2009) · Zbl 1181.65122 · doi:10.1017/S0962492906400015
[26] Blom, J., Verwer, J.: On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines. Department of Numerical Mathematics [NM]. (8902), 1-15 (1989). https://ir.cwi.nl/pub/5850
[27] Pryce, JD, On the convergence of iterated remeshing, IMA J. Numer. Anal., 9, 315-335, (1989) · Zbl 0681.65086 · doi:10.1093/imanum/9.3.315
[28] Budd, CJ; Huang, W; Russell, RD, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput., 17, 305-327, (1996) · Zbl 0860.35050 · doi:10.1137/S1064827594272025
[29] Lu, C., Huang,W., Qiu, J.: An adaptive moving mesh finite element solution of the Regularized Long Wave equation. J. Sci. Comput. 1-23 (2016) · JFM 54.0486.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.