×

Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces. (English) Zbl 1395.53071

Summary: We consider a convex Euclidean hypersurface that evolves by a volume- or area-preserving flow with speed given by a general nonhomogeneous function of the mean curvature. For a broad class of possible speed functions, we show that any closed convex hypersurface converges to a round sphere. The proof is based on the monotonicity of the isoperimetric ratio, which allows to control the inner radius and outer radius of the hypersurface and to deduce uniform bounds on the curvature by maximum principle arguments.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Alessandroni, R; Sinestrari, C, Convexity estimates for a nonhomogeneous mean curvature flow, Math. Z., 266, 65-82, (2010) · Zbl 1197.53080 · doi:10.1007/s00209-009-0554-3
[2] Andrews, B, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differ. Equ., 2, 151-171, (1994) · Zbl 0805.35048 · doi:10.1007/BF01191340
[3] Andrews, B, Volume-preserving anisotropic mean curvature flow, Indiana Univ. Math. J., 50, 783-827, (2001) · Zbl 1047.53037 · doi:10.1512/iumj.2001.50.1853
[4] Andrews, B.: Fully nonlinear parabolic equations in two space variables. Preprint arXiv:math.AP/0402235v1 (2004) · Zbl 1150.53024
[5] Andrews, B; McCoy, J, Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Am. Math. Soc., 364, 3427-3447, (2012) · Zbl 1277.53061 · doi:10.1090/S0002-9947-2012-05375-X
[6] Cabezas-Rivas, E; Sinestrari, C, Volume-preserving flow by powers of the mth mean curvature, Calc. Var. Partial Differ. Equ., 38, 441-469, (2010) · Zbl 1197.53082 · doi:10.1007/s00526-009-0294-6
[7] Chow, B., Chu S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. In: Part II, Analytic Aspects, Mathematical Surveys and Monographs, vol. 144. American Mathematical Society, Providence (2008) · Zbl 1157.53035
[8] Chow, B; Tsai, DH, Expansion of convex hypersurface by non-homogeneous functions of curvature, Asian J. Math., 1, 769-784, (1997) · Zbl 0911.53004 · doi:10.4310/AJM.1997.v1.n4.a7
[9] Chow, B; Tsai, DH, Nonhomogeneous Gauss curvature flows, Indiana Univ. Math. J., 47, 965-994, (1998) · Zbl 0952.53032 · doi:10.1512/iumj.1998.47.1546
[10] Gage, M.: On an area-preserving evolution equation for plane curves. In: Nonlinear Problems in Geometry (Mobile, Ala., 1985), Contemporary Mathematical, vol. 51, pp. 51-62. American Mathematical Society, Providence, RI (1986) · Zbl 0608.53002
[11] Huisken, G, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20, 237-266, (1984) · Zbl 0556.53001 · doi:10.4310/jdg/1214438998
[12] Huisken, G, The volume preserving mean curvature flow, J. Reine Angew. Math., 382, 35-48, (1987) · Zbl 0621.53007
[13] Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of Variations and Geometric Evolutions Problems (Cetraro, 1996), Lecture Notes in Mathematics, vol. 1713, pp. 45-84. Springer, Berlin (1999) · Zbl 0942.35047
[14] Huisken, G; Sinestrari, C, Convex ancient solutions of the mean curvature flow, J. Differ. Geom., 101, 267-287, (2015) · Zbl 1332.53085 · doi:10.4310/jdg/1442364652
[15] McCoy, JA, The mixed volume preserving mean curvature flow, Math. Z., 246, 155-166, (2004) · Zbl 1062.53057 · doi:10.1007/s00209-003-0592-1
[16] McCoy, JA, Mixed volume preserving curvature flows, Calc. Var. Partial Differ. Equ., 24, 131-154, (2005) · Zbl 1079.53099 · doi:10.1007/s00526-004-0316-3
[17] Schnürer, OC, Surfaces expanding by the inverse gauß curvature flow, J. Reine Angew. Math., 600, 117-134, (2006) · Zbl 1119.53045
[18] Schulze, F, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., 251, 721-733, (2005) · Zbl 1087.53062 · doi:10.1007/s00209-004-0721-5
[19] Schulze, F, Convexity estimates for flows by powers of the mean curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5, 261-277, (2006) · Zbl 1150.53024
[20] Sinestrari, C, Convex hypersurfaces evolving by volume preserving curvature flows, Calc. Var. Partial Differ. Equ., 54, 1985-1993, (2015) · Zbl 1325.53087 · doi:10.1007/s00526-015-0852-z
[21] Smoczyk, K, Harnack inequalities for curvature flows depending on mean curvature, New York J. Math., 3, 103-118, (1997) · Zbl 0897.53032
[22] Tso, K, Deforming a hypersurface by its Gauss-Kronecker curvature, Commun. Pure Appl. Math., 38, 867-882, (1985) · Zbl 0612.53005 · doi:10.1002/cpa.3160380615
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.