×

Quivers with relations for symmetrizable Cartan matrices. I: Foundations. (English) Zbl 1395.16006

This paper, which is the first of five series of papers, is devoted to studying the representation theory of a class of Iwanaga-Gorenstein algebras defined via quivers with relations associated with the symmetrizable Cartan matrix. To each symmetrizable Cartan matric \(C\) and an orientation \(\Omega\) of \(C\), the authors attach an infinite series of 1-Iwanaga-Gorenstein algebras \(H=H(C,D,\Omega)\) indexed by the different symmetrizers \(D\) of \(C\). These algebras are defined by quivers with relations over arbitrary field \(K\). The algebras \(H\) can be identified with tensor algebras of modulations of the orientation valued graph \(\Gamma\) corresponding to \((C,\Omega)\). However, in contrast to the classical notion of modulation, the rings attached to the vertices of \(\Gamma\) are truncated rings instead of division rings. They also introduce a series of algebras \(\prod=\prod(C,D)\), defined by quivers and relations. These algebras \(\prod\) can be regarded as preprojective algebras of quivers (or more generally of modulated graph) over truncated polynomial rings.
The main aim of the paper under review is to show that analogues of the five following results about the finite connected acyclic quiver \(Q\) hold for the algebras \(H\) and \(\prod\):
1. Gabriel theorem: The quiver \(Q\) is representation-finite if and only if \(Q\) is a Dynkin quiver of type \(A_n,D_n,E_k,k=6,7,8\). In this case, there is a bijection between the isomorphism classes of indecomposable representations of \(Q\) and the set of positive roots of the corresponding simple complex Lie algebra.
2. The discovery of I. N. Bernstein et al. [Usp. Mat. Nauk 28, No. 2(170), 19–33 (1973; Zbl 0269.08001)] of Coxeter functors \(C^\pm(-)=F_{i_n}^\pm\circ\cdots\circ F_{i_1}^\pm:\mathrm{rep}(KQ)\to\mathrm{rep}(KQ)\), which are defined as compositions of reflection functors. They lead to a more conceptual proof of Gabriel’s theorem. Applied to the indecomposable projective (resp., injective) representations they yield a family of indecomposable representations, called preprojective (resp., preinjective) representations.
3. Gabriel’s theorem saying that there are functorial isomorphisms \(TC^\pm(-)\cong\tau^\pm(-)\), where \(T\) is a twist functor and \(\tau(-)\) is the Auslander-Reiten translation.
4. Auslander, Platzeck and Reiten theorem saying that the functors \(F_k^+\) and Hom\(_{KQ} (T,.-)\), where \(F_k^+\) is a BGP-reflection functor and \(T\) is the associated APR-tilting module, are equivalent.
5.Gelfand and Ponomarevs discovery of the preprojective algebra \(\prod(Q)\) of the quiver \(Q\), and their result that \(\prod(Q)\), seen as a module over \(KQ\), is isomorphic to the direct sum of all preprojective \(KQ\)-modules. The algebra \(\prod(Q)\) is isomorphic to the tensor algebra \(T_{KQ}(\mathrm{Ext}^1_{KQ}(D(KQ),KQ))\), where \(D\) denotes the duality with respect to the base field \(K\).
For Part II, see [the authors, Int. Math. Res. Not. 2018, No. 9, 2866–2898 (2018; Zbl 1408.16012)].
Reviewer: Bin Zhu (Beijing)

MSC:

16G10 Representations of associative Artinian rings
16G20 Representations of quivers and partially ordered sets

References:

[1] Adachi, T., Iyama, O., Reiten, \[I.: \tau\] τ-tilting theory. Compos. Math. 150(3), 415-452 (2014) · Zbl 1330.16004 · doi:10.1112/S0010437X13007422
[2] Auslander, M., Buchweitz, R.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr. (N.S.) 38, 5-37 (1989) · Zbl 0697.13005
[3] Auslander, M., Platzeck, M., Reiten, I.: Coxeter functors without diagrams. Trans. Am. Math. Soc. 250, 1-46 (1979) · Zbl 0421.16016 · doi:10.1090/S0002-9947-1979-0530043-2
[4] Auslander, M., Reiten, I.: Applications to contravariantly finite subcategories. Adv. Math. 86(1), 111-152 (1991) · Zbl 0774.16006 · doi:10.1016/0001-8708(91)90037-8
[5] Auslander, M., Reiten, I., Smalø, S.: Representation theory of Artin algebras. In: Corrected reprint of the 1995 original. Cambridge Studies in Advanced Mathematics, vol. 36, pp. xiv+425. Cambridge University Press, Cambridge (1997) · Zbl 0834.16001
[6] Auslander, M., Smalø, S.: Almost split sequences in subcategories. J. Algebra 69(2), 426-454 (1981) · Zbl 0457.16017 · doi:10.1016/0021-8693(81)90214-3
[7] Baer, D., Geigle, W., Lenzing, H.: The preprojective algebra of a tame hereditary Artin algebra. Commun. Algebra 15(1-2), 425-457 (1987) · Zbl 0612.16015 · doi:10.1080/00927878708823425
[8] Baumann, P., Kamnitzer, J.: Preprojective algebras and MV polytopes. Represent. Theory 16, 152-188 (2012) · Zbl 1242.05273 · doi:10.1090/S1088-4165-2012-00413-7
[9] Baumann, P., Kamnitzer, J., Tingley, P.: Affine Mirković-Vilonen polytopes. Publ. Math. Inst. Hautes Études Sci. 120, 113-205 (2014) · Zbl 1332.17012
[10] Bautista, R., Salmerón, L., Zuazua, R.: Differential tensor algebras and their module categories. In: London Mathematical Society Lecture Note Series, vol. 362, pp. x+452. Cambridge University Press, Cambridge (2009) · Zbl 1266.16007
[11] Bernstein, I.N., Gelfand, I.M.Ponomarev, VA,: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28, no. 2 (170), 19-33 (1973) · Zbl 1362.16018
[12] Bolten, B.: Spiegelungsfunktoren für präprojektive Algebren. Diploma Thesis, University of Bonn (2010) · Zbl 1101.81093
[13] Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Invent. Math. 65(3), 331-378 (1981/1982) · Zbl 0482.16026
[14] Brenner, S., Butler, M.C.R.: The equivalence of certain functors occurring in the representation theory of Artin algebras and species. J. Lond. Math. Soc. (2) 14(1), 183-187 (1976) · Zbl 0351.16011 · doi:10.1112/jlms/s2-14.1.183
[15] Brenner, S., Butler, M.C.R., King, A.D.: Periodic algebras which are almost Koszul. Algebras Represent. Theory 5(4), 331-367 (2002) · Zbl 1056.16003 · doi:10.1023/A:1020146502185
[16] Buan, A., Marsh, R., Vatne, D.: Cluster structures from 2-Calabi-Yau categories with loops. Math. Z. 265, 951-970 (2010) · Zbl 1229.18012 · doi:10.1007/s00209-009-0549-0
[17] Buchweitz, R.: Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings (1987) (Unpublished manuscript) · Zbl 1283.16010
[18] Cecotti, S.: The quiver approach to the BPS spectrum of a \[4d4\] d \[N=2N=2\] gauge theory. String-Math 2012, 3-17, Proc. Sympos. Pure Math., 90, Amer. Math. Soc., Providence, RI (2015) · Zbl 1356.81199
[19] Cecotti, S., Del Zotto, M.: \[4d4\] d \[N=2N=2\] gauge theories and quivers: the non-simply laced case. J. High Energy Phys. (10), 190 (2012) (front matter + 34 pp) · Zbl 1397.81140
[20] Crawley-Boevey, W.: More lectures on representations of quivers. In: Lecture Notes. http://www1.maths.leeds.ac.uk/ pmtwc/ · Zbl 0857.16014
[21] Crawley-Boevey, W.: Rigid integral representations of quivers. In: (English summary) Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc., vol. 18, pp. 155-163, American Mathematical Society , Providence (1996) · Zbl 0857.16014
[22] Crawley-Boevey, W.: Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74, 548-574 (1999) · Zbl 0958.16014 · doi:10.1007/s000140050105
[23] Crawley-Boevey, W.: On the exceptional fibres of Kleinian singularities. Am. J. Math. 122(5), 1027-1037 (2000) · Zbl 1001.14001 · doi:10.1353/ajm.2000.0036
[24] Crawley-Boevey, W., Shaw, P.: Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem. Adv. Math. 201(1), 180-208 (2006) · Zbl 1095.15014 · doi:10.1016/j.aim.2005.02.003
[25] Dlab, V.: Representations of valued graphs. In: Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 73. Presses de l’Université de Montréal, Montreal, Que (1980) · Zbl 0478.16026
[26] Dlab, V., Ringel, C.M.: Representations of graphs and algebras. In: Carleton Mathematical Lecture Notes, No. 8. Department of Mathematics, Carleton University, Ottawa, Ont. pp. iii+86 (1974) · Zbl 0449.16022
[27] Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. In: Memoirs of the American Mathematical Society 6, vol. 173, pp. v+57 (1976) · Zbl 0332.16015
[28] Dlab, V., Ringel, C.M.: The preprojective algebra of a modulated graph. In: Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), vol. 832, pp. 216-231, Lecture Notes in Math. Springer, Berlin (1980) · Zbl 0489.16024
[29] Fan, Z.: Geometric approach to Hall algebra of representations of quivers over local rings. arXiv:1012.5257v4
[30] Gabriel, P. Unzerlegbare Darstellungen. I. (German) Math. Manuscr. 6, 71-103 (1972) (correction, ibid. 6 (1972), 309) · Zbl 0232.08001
[31] Gabriel, P.: Indecomposable representations. II. In: Symposia Mathematica, (Convegno di Algebra Commutativa, INDAM, Rome, 1971), vol. XI, pp. 81-104. Academic Press, London (1973) · Zbl 1330.16004
[32] Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, pp. 1-71. Springer, Berlin (1980) · Zbl 0697.13005
[33] Geiß, C., Leclerc, B., Schröer, B.: Quivers with relations for symmetrizable Cartan matrices II: Change of symmetrizers. Int. Math. Res. Not. (IMRN) (accepted) (2015). arXiv:1511.05898 · Zbl 1408.16012
[34] Geiß, C., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices III: Convolution algebras. Represent. Theory (Electronic Journal of the American Mathematical Society) 20, 375-413 (2016) · Zbl 1362.16018 · doi:10.1090/ert/487
[35] Gelfand, I.M., Ponomarev, V.A.: Model algebras and representations of graphs. Funktsional. Anal. i Prilozhen. 13(3), 1-12 (1979) · Zbl 0437.16020
[36] Happel, D., Ringel, C.M.: Tilted algebras. Trans. Am. Math. Soc. 274(2), 399-443 (1982) · Zbl 0503.16024 · doi:10.1090/S0002-9947-1982-0675063-2
[37] Happel, D., Vossieck, D.: Minimal algebras of infinite representation type with preprojective component. Manuscr. Math. 42(2-3), 221-243 (1983) · Zbl 0516.16023 · doi:10.1007/BF01169585
[38] Hernandez, D., Leclerc, B.: A cluster algebra approach to \[q\] q-characters of Kirillov-Reshetikhin modules. J. Eur. Math. Soc. (JEMS) 18(5), 1113-1159 (2016) · Zbl 1405.17028
[39] Iwanaga, Y.: On rings with finite self-injective dimension \[\le 1\]≤1. Osaka J. Math. 15, 33-46 (1978) · Zbl 0402.16017
[40] Iwanaga, Y.: On rings with finite self-injective dimension. Commun. Algebra 7(4), 393-414 (1979) · Zbl 0399.16010 · doi:10.1080/00927877908822356
[41] Ladkani, S.: 2-CY-tilted algebras that are not Jacobian. arXiv:1403.6814 · Zbl 0457.16017
[42] Leszczyński, Z., Skowroński, A.: Tame tensor products of algebras. Colloq. Math. 98(1), 125-145 (2003) · Zbl 1065.16011 · doi:10.4064/cm98-1-10
[43] Li, F.: Modulation and natural valued quiver of an algebra. Pacific J. Math. 256(1), 105-128 (2012) · Zbl 1283.16010 · doi:10.2140/pjm.2012.256.105
[44] Luo, X., Zhang, P.: Monic representations and Gorenstein-projective modules. Pacific J. Math. 264(1), 163-194 (2013) · Zbl 1317.16010 · doi:10.2140/pjm.2013.264.163
[45] Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proc. Steklov Inst. Math. 246(3), 227-248 (2004) · Zbl 1101.81093
[46] Ringel, C.M.: Representations of \[KK\]-species and bimodules. J. Algebra 41(2), 269-302 (1976) · Zbl 0338.16011 · doi:10.1016/0021-8693(76)90184-8
[47] Ringel, C.M.: Finite dimensional hereditary algebras of wild representation type. Math. Z. 161, 235-255 (1978) · Zbl 0415.16023 · doi:10.1007/BF01214506
[48] Ringel, C.M.: Tame algebras and integral quadratic forms. In: Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984) · Zbl 0546.16013
[49] Ringel, C.M. : The preprojective algebra of a quiver. In: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc., vol. 24, pp. 467-480. American Mathematical Society, Providence (1998) · Zbl 0928.16012
[50] Ringel, C.M., Schmidmeier, M.: Invariant subspaces of nilpotent linear operators, I. J. Reine Angew. Math. 614, 1-52 (2008) · Zbl 1145.16005 · doi:10.1515/CRELLE.2008.001
[51] Ringel, C.M., Zhang, P.: Representations of quivers over the algebra of dual numbers. arXiv:1112.1924 · Zbl 1406.16010
[52] Schofield, A.: Representations of rings over skew fields. In: London Mathematical Society, Lecture Notes Series, vol. 92, Cambridge University Press, Cambridge (1985) · Zbl 0571.16001
[53] Skowroński, A.: Tame triangular algebras over Nakayama algebra. J. Lond. Math. Soc. (2) 34, 245-264 (1986) · Zbl 0606.16021 · doi:10.1112/jlms/s2-34.2.245
[54] Vatne, D.: Endomorphism rings of maximal rigid objects in cluster tubes. Colloq. Math. 123(1), 63-93 (2011) · Zbl 1253.16017 · doi:10.4064/cm123-1-6
[55] Yamakawa, D.: Quiver varieties with multiplicities, Weyl groups of non-symmetric Kac-Moody algebras, and Painlevé equations. SIGMA 6, Paper 087, 43 pp (2010) · Zbl 1218.53088
[56] Yang, D.: Endomorphism algebras of maximal rigid objects in cluster tubes. Commun. Algebra 40(12), 4347-4371 (2012) · Zbl 1271.18014 · doi:10.1080/00927872.2011.600745
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.