×

Design for nonlinear networked control systems with time delay governed by Markov chain with partly unknown transition probabilities. (English) Zbl 1394.93306

Summary: The problem of state feedback control for a class of nonlinear networked control systems with time delay is discussed in this paper. The time delay is modeled as a finite state Markov chain of which transition probabilities are partly unknown. The closed-loop system model is obtained by means of state augmentation. A sufficient condition is given which guarantees the stochastic stability of the closed-loop system in the form of linear matrix inequalities and the maximum bound of the nonlinearity is also obtained. Finally, a simulation example is used to show the validity of the proposed method.

MSC:

93E03 Stochastic systems in control theory (general)
93D15 Stabilization of systems by feedback
93E15 Stochastic stability in control theory
Full Text: DOI

References:

[1] Zhang, W.; Branicky, M. S.; Phillips, S. M., Stability of networked control systems, IEEE Control Systems Magazine, 21, 1, 84-97, (2001) · doi:10.1109/37.898794
[2] Li, J. G.; Yuan, J. Q.; Lu, J. G., Observer-based \(\text{H}_\infty\) control for networked nonlinear systems with random packet losses, ISA Transactions, 49, 1, 39-46, (2010)
[3] Lu, R.; Xu, Y.; Xue, A.; Zheng, J., Networked control with state reset and quantized measurements: observer-based case, IEEE Transactions on Industrial Electronics, 60, 11, 5206-5213, (2013) · doi:10.1109/TIE.2012.2227910
[4] Ishii, H., \(H_\infty\) control with limited communication and message losses, Systems & Control Letters, 57, 4, 322-331, (2008) · Zbl 1133.93016 · doi:10.1016/j.sysconle.2007.09.007
[5] Wang, D.; Wang, J.; Wang, W., \(H_\infty\) controller design of networked control systems with markov packet dropouts, IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 43, 3, 689-697, (2013) · doi:10.1109/TSMCA.2012.2211587
[6] Qu, F. L.; Guan, Z. H.; Li, T.; Yuan, F. S., Stabilisation of wireless networked control systems with packet loss, IET Control Theory and Applications, 6, 15, 2362-2366, (2012) · doi:10.1049/iet-cta.2010.0562
[7] Liu, K.; Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 1, 102-108, (2012) · Zbl 1244.93094 · doi:10.1016/j.automatica.2011.09.029
[8] Lu, R.; Zhou, X.; Wu, F.; Xue, A., Quantized \(H_\infty\) output feedback control for linear discrete-time systems, Journal of the Franklin Institute, 350, 8, 2096-2108, (2013) · Zbl 1293.93353 · doi:10.1016/j.jfranklin.2012.09.006
[9] Zhang, J.; Xia, Y.; Shi, P., Design and stability analysis of networked predictive control systems, IEEE Transactions on Control Systems Technology, 21, 4, 1495-1501, (2013) · doi:10.1109/TCST.2012.2208967
[10] Gupta, R. A.; Chow, M. Y., Networked control system: overview and research trends, IEEE Transactions on Industrial Electronics, 57, 7, 2527-2535, (2010) · doi:10.1109/TIE.2009.2035462
[11] Xia, F.; Li, S. B.; Sun, Y. X., A neural network based feedback scheduler for networked control system with flexible workload, Advances in Natural Computation. Advances in Natural Computation, Lecture Notes in Computer Science, 3611, 242-251, (2005), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/11539117_36
[12] Lu, R.; Li, H.; Zhu, Y., Quantized \(H_\infty\) filtering for singular time-varying delay systems with unreliable communication channel, Circuits, Systems, and Signal Processing, 31, 2, 521-538, (2012) · Zbl 1253.94008 · doi:10.1007/s00034-011-9333-6
[13] Liu, K.; Fridman, E.; Hetel, L., Stability and L_{2}-gain analysis of networked control systems under Round-Robin scheduling: a time-delay approach, Systems and Control Letters, 61, 5, 666-675, (2012) · Zbl 1250.93106 · doi:10.1016/j.sysconle.2012.03.002
[14] Lu, R.; Wu, F.; Xue, A., Networked control with reset quantized state based on bernoulli processing, IEEE Transactions on Industrial Electronics, 61, 9, 4838-4846, (2014) · doi:10.1109/TIE.2013.2289870
[15] Yu, M.; Wang, L.; Chu, T.; Xie, G., Stabilization of networked control systems with data packet dropout and network delays via switching system approach, Proceedings of the 43rd IEEE Conference on Decision and Control (CDC ’04) · doi:10.1109/CDC.2004.1429261
[16] Shi, Y.; Yu, B., Output feedback stabilization of networked control systems with random delays modeled by Markov chains, IEEE Transactions on Automatic Control, 54, 7, 1668-1674, (2009) · Zbl 1367.93538 · doi:10.1109/TAC.2009.2020638
[17] Gao, H. J.; Meng, X. Y.; Chen, T. W., Stabilization of networked control systems with a new delay characterization, IEEE Transactions on Automatic Control, 53, 9, 2142-2148, (2008) · Zbl 1367.93696 · doi:10.1109/TAC.2008.930190
[18] Yang, F.; Wang, Z.; Hung, Y. S.; Gani, M., \(H_\infty\) control for networked systems with random communication delays, IEEE Transactions on Automatic Control, 51, 3, 511-518, (2006) · Zbl 1366.93167 · doi:10.1109/TAC.2005.864207
[19] He, X.; Wang, Z.; Zhou, D. H., Robust fault detection for networked systems with communication delay and data missing, Automatica, 45, 11, 2634-2639, (2009) · Zbl 1180.93101 · doi:10.1016/j.automatica.2009.07.020
[20] Zhang, L.; Shi, Y.; Chen, T.; Huang, B., A new method for stabilization of networked control systems with random delays, IEEE Transactions on Automatic Control, 50, 8, 1177-1181, (2005) · Zbl 1365.93421 · doi:10.1109/TAC.2005.852550
[21] Li, F.; Wang, X.; Shi, P., Robust quantized \(H_\infty\) control for network control systems with Markovian jumps and time delays, International Journal of Innovative Computing, Information and Control, 9, 12, 4889-4902, (2013)
[22] Krtolica, R.; Ozguner, U.; Chan, H.; Goktas, H., Stability of linear feedback systems with random communication delays, International Journal of Control, 59, 4, 925-953, (1994) · Zbl 0812.93073
[23] Xiao, L.; Hassibi, A.; How, J. P., Control with random communication delays via a discrete-time jump system approach, Proceedings of the American Control Conference · doi:10.1109/ACC.2000.879591
[24] Gao, S. W.; Tang, G. Y., Output feedback stabilization of networked control systems with random delays, Proceedings of the 18th IFAC World Congress
[25] Xu, Y.; Su, H.; Pan, Y. J., Output feedback stabilization for Markov-based nonuniformly sampled-data networked control systems, Systems and Control Letters, 62, 8, 656-663, (2013) · Zbl 1279.93087 · doi:10.1016/j.sysconle.2013.04.011
[26] Qiu, L.; Yao, F.; Zhong, X., Stability analysis of networked control systems with random time delays and packet dropouts modeled by markov chains, Journal of Applied Mathematics, 2013, (2013) · Zbl 1397.93222 · doi:10.1155/2013/715072
[27] Shi, Y.; Yu, B., Robust mixed \(\text{H}_2 / \text{H}_\infty\) control of networked control systems with random time delays in both forward and backward communication links, Automatica, 47, 4, 754-760, (2011) · Zbl 1215.93045 · doi:10.1016/j.automatica.2011.01.022
[28] Hu, S. L.; Liu, J. L.; Du, Z. P., Stabilization of discrete-time networked control systems with partly known transmission delay: a new augmentation approach, International Journal of Control, Automation and Systems, 9, 6, 1080-1085, (2011) · doi:10.1007/s12555-011-0608-2
[29] Li, Y.; Zhang, Q.; Zhang, S.; Cai, M., Stabilization for networked control systems with random sampling periods, Journal of Applied Mathematics, 2013, (2013) · Zbl 1266.93059 · doi:10.1155/2013/252679
[30] Qiu, L.; Liu, C.; Yao, F.; Xu, G., Analysis and design of networked control systems with random Markovian delays and uncertain transition probabilities, Abstract and Applied Analysis, 2014, (2014) · Zbl 1406.93263 · doi:10.1155/2014/486978
[31] Zhang, Y.; Fang, H.; Liu, Z., Fault detection for nonlinear networked control systems with Markov data transmission pattern, Circuits, Systems, and Signal Processing, 31, 4, 1343-1358, (2012) · Zbl 1267.93180 · doi:10.1007/s00034-012-9389-y
[32] Wang, G. L., Control and filtering for some classes of Markovian jump systems [Doctoral dissertation], (2010), Northeastern University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.