×

Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape. (English) Zbl 1394.74016

Summary: Investigated in this paper is the surface tension-induced stress field around a nanoscale inclusion of arbitrary shape embedded in an infinite elastic plane, with an emphasis on the combined effects of surface tension and arbitrary inclusion shape. Muskhelishvili’s complex variable method is employed to formulate the basic equations that are solved with the aid of conformal mapping and series expansion methods. Accuracy of the present solution is verified by comparing its predictions with known results of an arbitrarily shaped hole. The surface tension-induced stress field is demonstrated for four shapes of inclusions (ellipse, approximately regular triangle, square and regular pentagon with round corners). The numerical results show that as the inclusion changes from a “soft” to a “hard” one (compared to the matrix), hoop and normal stresses along the inclusion-matrix interface on the inclusion side will increase, while those on the matrix side will decrease. However, shear stress along the inclusion-matrix interface does not considerably change as the inclusion changes from a “soft” to a “hard” one. It is also found that the maximum hoop stress on the matrix side of a “soft” inclusion and the maximum shear stress always occur nearby, but not exactly at the round corners where all other stresses for all four discussed inclusion shapes attain their maximums. Besides, for the four inclusion shapes discussed, shear stress along the inclusion-matrix interface vanishes at all corners as a consequence of the symmetry.

MSC:

74B15 Equations linearized about a deformed state (small deformations superposed on large)
70C20 Statics
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74S70 Complex-variable methods applied to problems in solid mechanics
30E25 Boundary value problems in the complex plane
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Cammarata, R.C.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237(2), 180-184 (1997) · doi:10.1016/S0921-5093(97)00128-7
[2] Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
[3] Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827-1854 (2005) · Zbl 1120.74683 · doi:10.1016/j.jmps.2005.02.012
[4] Zhang, W.X., Wang, T.J., Chen, X.: Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int. J. Plast. 26(7), 957-975 (2010) · Zbl 1454.74008 · doi:10.1016/j.ijplas.2009.12.002
[5] Dai, M., Schiavone, P., Gao, C.F.: Uniqueness of neutral elastic circular nano-inhomogeneities in antiplane shear and plane deformations. J. Appl. Mech. 83(10), 100110 (2016) · doi:10.1115/1.4034118
[6] Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[7] Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[8] Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093-1109 (1998) · doi:10.1080/01418619808239977
[9] Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 252(1271), 561-569 (1959) · Zbl 0092.42001 · doi:10.1098/rspa.1959.0173
[10] Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376-396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[11] Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535-537 (2003) · doi:10.1063/1.1539929
[12] Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 72(4), 663-671 (2004) · Zbl 1111.74629 · doi:10.1115/1.1781177
[13] Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. Math. Phys. Eng. Sci. 461(2062), 3335-3353 (2005) · Zbl 1370.74068 · doi:10.1098/rspa.2005.1520
[14] Lim, C.W., Li, Z.R., He, L.H.: Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids Struct. 43(17), 5055-5065 (2006) · Zbl 1120.74380 · doi:10.1016/j.ijsolstr.2005.08.007
[15] Sharma, P., Wheeler, L.T.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74(3), 447-454 (2007) · Zbl 1111.74630 · doi:10.1115/1.2338052
[16] Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44(24), 7988-8005 (2007) · Zbl 1167.74525 · doi:10.1016/j.ijsolstr.2007.05.019
[17] Avazmohammadi, R., Yang, F.Q., Abbasion, S.: Effect of interface stresses on the elastic deformation of an elastic half-plane containing an elastic inclusion. Int. J. Solids Struct. 46(14-15), 2897-2906 (2009) · Zbl 1167.74358 · doi:10.1016/j.ijsolstr.2009.03.012
[18] Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A/Solids 28(5), 926-934 (2009) · Zbl 1176.74045 · doi:10.1016/j.euromechsol.2009.04.001
[19] Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56(6), 2298-2327 (2008) · Zbl 1171.74398 · doi:10.1016/j.jmps.2008.01.001
[20] Jammes, M., Mogilevskaya, S.G., Crouch, S.L.: Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Eng. Anal. Bound. Elem. 33(2), 233-248 (2009) · Zbl 1244.74034 · doi:10.1016/j.enganabound.2008.03.010
[21] Wang, X., Schiavone, P.: Two circular inclusions with arbitrarily varied surface effects. Acta Mech. 226(5), 1471-1486 (2015) · Zbl 1329.74024 · doi:10.1007/s00707-014-1264-4
[22] Yang, F.Q.: Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J. Appl. Phys. 95(7), 3516-3520 (2004) · doi:10.1063/1.1664030
[23] Muskhelishvili, N.I.: Some basic problems of the mathematical theory of elasticity. Math. Gaz. 48(365), 445-447 (1953) · Zbl 0052.41402
[24] Dai, M., Schiavone, P., Gao, C.: Influence of surface effect of the edge of a half-plane on the stress concentration around a nearby nanosized hole of arbitrary shape. Q. J. Mech. Appl. Math. 69(3), 215-229 (2016) · Zbl 1443.74187 · doi:10.1093/qjmam/hbw005
[25] Dai, M., Meng, L., Huang, C., Gao, C.: Electro-elastic fields around two arbitrarily-shaped holes in a finite electrostrictive solid. Appl. Math. Model. 40(7-8), 4625-4639 (2016) · Zbl 1459.74056 · doi:10.1016/j.apm.2015.12.001
[26] Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225(12), 3453-3462 (2014) · Zbl 1326.74014 · doi:10.1007/s00707-014-1148-7
[27] Luo, J., Gao, C.: Stress field of a coated arbitrary shape inclusion. Meccanica 46(5), 1055-1071 (2011) · Zbl 1271.74045 · doi:10.1007/s11012-010-9363-3
[28] Savin, G.N.: Stress Concentration Around Holes. Pergamon Press, New York (1961) · Zbl 0124.18303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.