×

Convergent analysis of energy conservative algorithm for the nonlinear Schrödinger equation. (English) Zbl 1394.65115

Summary: Using average vector field method in time and Fourier pseudospectral method in space, we obtain an energy-preserving scheme for the nonlinear Schrödinger equation. We prove that the proposed method conserves the discrete global energy exactly. A deduction argument is used to prove that the numerical solution is convergent to the exact solution in discrete \(L_2\) norm. Some numerical results are reported to illustrate the efficiency of the numerical scheme in preserving the energy conservation law.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Menyuk, C. R., Stability of solitons in birefringent optical fibers, Journal of the Optical Society of America B: Optical Physics, 5, 392-402, (1998)
[2] Wadati, M.; Iizuka, T.; Hisakado, M., A coupled nonlinear Schrödinger equation and optical solitons, Journal of the Physical Society of Japan, 61, 7, 2241-2245, (1992) · doi:10.1143/jpsj.61.2241
[3] Feng, K.; Qin, M. Z., Symplectic Geometric Algorithms for Hamiltonian Systems, (2010), Hangzhou, China: Springer, Hangzhou, China · Zbl 1207.65149
[4] Qin, M. Z.; Wang, Y. S., Structure-Preserving Algorithm for PDEs, (2011), Hangzhou, China: Zhejiang Press for Science and Technology, Hangzhou, China
[5] Cai, J.-X.; Wang, Y.-S., A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system, Chinese Physics B, 22, 6, (2013) · doi:10.1088/1674-1056/22/6/060207
[6] Akrivis, G. D., Finite difference discretization of the cubic Schrödinger equation, IMA Journal of Numerical Analysis, 13, 1, 115-124, (1993) · Zbl 0762.65070 · doi:10.1093/imanum/13.1.115
[7] Jiang, C.-L.; Sun, J.-Q., A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system, Chinese Physics B, 23, 5, (2014) · doi:10.1088/1674-1056/23/5/050202
[8] Lv, Z.-Q.; Wang, Y.-S.; Song, Y.-Z., A new multi-symplectic integration method for the nonlinear schrödinger equation, Chinese Physics Letters, 30, 3, (2013) · doi:10.1088/0256-307x/30/3/030201
[9] Dehghan, M.; Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Computer Physics Communications, 181, 1, 43-51, (2010) · Zbl 1206.65207 · doi:10.1016/j.cpc.2009.08.015
[10] Chang, Q.; Jia, E.; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, Journal of Computational Physics, 148, 2, 397-415, (1999) · Zbl 0923.65059 · doi:10.1006/jcph.1998.6120
[11] Wang, T. C.; Guo, B. L., Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension, Science in China Series A: Mathematics, 41, 3, 207-233, (2011) · Zbl 1488.65296
[12] Wang, Y. S.; Li, Q. H.; Song, Y. Z., Two new simple multi-symplectic schemes for the nonlinear Schrödinger equation, Chinese Physics Letters, 25, 5, 1538-1540, (2008) · doi:10.1088/0256-307x/25/5/005
[13] Wang, Y. S.; Li, S. T., New schemes for the coupled nonlinear Schrödinger equation, International Journal of Computer Mathematics, 87, 4, 775-787, (2010) · Zbl 1191.65170 · doi:10.1080/00207160802195985
[14] Zhang, R.-P.; Yu, X.-J.; Feng, T., Solving coupled nonlinear Schrödinger equations via a direct discontinuous Galerkin method, Chinese Physics B, 21, 3, (2012) · doi:10.1088/1674-1056/21/3/030202
[15] Quispel, G. R.; McLaren, D. I., A new class of energy-preserving numerical integration methods, Journal of Physics A: Mathematical and Theoretical, 41, 4, (2008) · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
[16] Celledoni, E.; Grimm, V.; McLachlan, R. I.; McLaren, D. I.; O’Neale, D.; Owren, B.; Quispel, G. R., Preserving energy resp. dissipation in numerical PDEs using the ‘average vector field’ method, Journal of Computational Physics, 231, 20, 6770-6789, (2012) · Zbl 1284.65184 · doi:10.1016/j.jcp.2012.06.022
[17] Canuto, C.; Quarteroni, A., Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, 38, 157, 67-86, (1982) · Zbl 0567.41008 · doi:10.2307/2007465
[18] Zhou, Y. L., Application of Discrete Functional Analysis to the Finite Diserence Methods, (1990), Beijing, China: International Academic Publishers, Beijing, China
[19] Chen, J.-B.; Qin, M.-Z., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electronic Transactions on Numerical Analysis, 12, 193-204, (2001) · Zbl 0980.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.