×

Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. (English) Zbl 1394.42030

A function \(f\) belongs to the class \(\operatorname{Lip}\alpha \), for some \(\alpha \in (0,1]\) if \[ \left| f(x)-f(y)\right| =O\left( \left| x-y\right| ^{\alpha }\right) \text{.} \] If instead of \(O\left( \left| x-y\right| ^{\alpha }\right) \) we have \(o\left( \left| x-y\right| ^{\alpha }\right) \) then \(f\) belongs to the class \(\operatorname{lip}\alpha \).
Considering the wavelet approximation of a function \(f\) the authors obtain several estimations for the best wavelet approximation of \(f\) with respect to the supremum norm and with respect to the \(L_{p}\) type norm in the cases when \(f\in \operatorname{Lip}\alpha \), respectively \(f\in \operatorname{lip}\alpha \). An even more general case is discussed, when \(f\in \operatorname{Lip}\left( \xi ,p\right) \) respectively \(f\in\operatorname{lip}\left( \xi ,p\right) \). Here, \(1\leq p<\infty \), \(\xi \) is a monotone increasing function and \(f\in\operatorname{Lip}\left( \xi ,p\right) \) if \[ \left\{ \frac{1}{2\pi }\int\limits_{0}^{2\pi }\left| f(x+t)-f(x)\right| ^{p}dx\right\} ^{1/p}=O(\xi (t)) \] and \(f\in \operatorname{lip}\left( \xi ,p\right) \) if \[ \left\{ \frac{1}{2\pi }\int\limits_{0}^{2\pi }\left| f(x+t)-f(x)\right| ^{p}dx\right\} ^{1/p}=o(\xi (t)). \]

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
41A25 Rate of convergence, degree of approximation

References:

[1] [1] I. P. Natanson, Constructive Function Theory, Gosudarstvennoe Izdatel‘stvo Tehniko-Teoreticeskoi Literatury, Moscow, 1949.
[2] [2] Y. Meyer, Wavelets their post and their future, Progress in Wavelet Analysis and applications (Toulouse,1992) (Y.Meyer and S. Roques, eds.), Frontieres,Gif-sur-Yvette (1993), 9-18. · Zbl 0948.42500
[3] [3] J. Morlet, G. Arens, E. Fourgeau, D. Giard, Wave propagation and sampling Theory, part I: complex signal land scattering in multilayer media, Geophysics 47 (2) (1982) 203-221.
[4] [4] E.C. Titchmarsh, The Theory of functions, Second Edition, Oxford University Press, (1939). · Zbl 0022.14602
[5] [5] A.H. Siddiqi, Ph.D. Thesis, Aligarh Muslim University, Aligarh (1967).
[6] [6] I. Daubechies, J.C. Lagarias, Two-scale difference equations I, Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991) 1388-1410. · Zbl 0763.42018
[7] [7] S. Wim, P. Robert Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximation of smooth functions, SIAM J. NUMER. ANAL. 31 (4) 1240-1264. · Zbl 0822.65013
[8] [8] A. Zygmund, Trigonometric Series Volume I, Cambridge University Press, 1959. · Zbl 0085.05601
[9] [9] C.K. Chui, An introduction to · Zbl 0925.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.