×

Stabilization for the wave equation with variable coefficients and Balakrishnan-Taylor damping. (English) Zbl 1394.35044

Summary: In this paper, we consider the wave equation with variable coefficients and Balakrishnan-Taylor damping and source terms. This work is devoted to prove, under suitable conditions on the initial data, the uniform decay rates of the energy without imposing any restrictive growth near zero assumption on the damping term.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L70 Second-order nonlinear hyperbolic equations
35B35 Stability in context of PDEs

References:

[1] A. V. Balakrishnan and L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, in Proceedings “Damping 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, (1989).
[2] R. W. Bass and D. Zes, Spillover, nonlinearity and flexible structures, in The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (ed. L.W. Taylor), (1991), 1-14. · doi:10.1109/cdc.1991.261683
[3] Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal. 97 (2014), 191-209. · Zbl 1284.35253 · doi:10.1016/j.na.2013.11.019
[4] M. M. Cavalcanti, A. Khemmoudj and M. Medjden, Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl. 328 (2007), no. 2, 900-930. · Zbl 1107.35024 · doi:10.1016/j.jmaa.2006.05.070
[5] T. G. Ha, General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping, Z. Angew. Math. Phys. 67 (2016), no. 2, Art. 32, 17 pp. · Zbl 1353.35064 · doi:10.1007/s00033-016-0625-3
[6] —-, Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions, Discrete Contin. Dyn. Syst. 36 (2016), no. 12, 6899-6919. · Zbl 1357.35226 · doi:10.3934/dcds.2016100
[7] I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl. 235 (1999), no. 1, 13-57. · Zbl 0931.35022 · doi:10.1006/jmaa.1999.6348
[8] J. Li and S. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback, Nonlinear Anal. 112 (2015), 105-117. · Zbl 1304.35096 · doi:10.1016/j.na.2014.08.021
[9] L. Lu and S. Li, Higher order energy decay for damped wave equations with variable coefficients, J. Math. Anal. Appl. 418 (2014), no. 1, 64-78. · Zbl 1310.35150 · doi:10.1016/j.jmaa.2014.03.081
[10] P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12 (1999), no. 1, 251-283. · Zbl 0940.35034 · doi:10.5209/rev_rema.1999.v12.n1.17227
[11] C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys. 65 (2014), no. 1, 91-113. · Zbl 1295.35309 · doi:10.1007/s00033-013-0324-2
[12] J. Y. Park, T. G. Ha and Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys. 61 (2010), no. 2, 235-265. · Zbl 1198.35034 · doi:10.1007/s00033-009-0009-z
[13] N.-e. Tatar and A. Zaraï, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, Demonstratio Math. 44 (2011), no. 1, 67-90. · Zbl 1227.35074 · doi:10.1515/dema-2013-0297
[14] J. Wu, Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions, Nonlinear Anal. 75 (2012), no. 18, 6562-6569. · Zbl 1252.35179 · doi:10.1016/j.na.2012.07.032
[15] P.-F. Yao, On the observability inequalities for exact controllablility of wave equations with variable coefficients, SIAM J. Control Optim. 37 (1999), no. 5, 1568-1599. · Zbl 0951.35069 · doi:10.1137/s0363012997331482
[16] Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal. 1 (1996), no. 1, 83-102. · Zbl 0940.35036 · doi:10.1155/s1085337596000048
[17] A. Zaraï and N.-E. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math. (Brno) 46 (2010), no. 3, 157-176. · Zbl 1240.35330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.