×

On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials. (English) Zbl 1394.35041

Summary: In this work we present several quantitative results of convergence to equilibrium for the linear Boltzmann operator with soft potentials under Grad’s angular cut-off assumption. This is done by an adaptation of the famous entropy method and its variants, resulting in explicit algebraic, or even stretched exponential, rates of convergence to equilibrium under appropriate assumptions. The novelty in our approach is that it involves functional inequalities relating the entropy to its production rate, which have independent applications to equations with mixed linear and non-linear terms. We also briefly discuss some properties of the equation in the non-cut-off case and conjecture what we believe to be the right rate of convergence in that case.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35Q20 Boltzmann equations

References:

[1] Alonso, R.; Sun, W., The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338, 1233-1286 (2015) · Zbl 1319.35254
[2] Alonso, R. J.; Carneiro, E.; Gamba, I. M., Convolution inequalities for the Boltzmann collision operator, Comm. Math. Phys., 298, 293-322 (2010) · Zbl 1206.35187
[3] Baranger, C.; Mouhot, C., Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoam., 21, 819-841 (2005) · Zbl 1092.76057
[4] Bisi, M.; Cañizo, J. A.; Lods, B., Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath, SIAM J. Math. Anal., 43, 2640-2674 (2011) · Zbl 1233.35151
[5] Bisi, M.; Cañizo, J. A.; Lods, B., Entropy dissipation estimates for the linear Boltzmann operator, J. Funct. Anal., 269, 1028-1069 (2015) · Zbl 1317.35170
[6] Bobkov, S. G.; Tetali, P., Modified log-Sobolev inequalities, mixing and hypercontractivity, (Proceedings of the XXXVth Annual ACM Symposium on Theory of Computing (2003), ACM: ACM New York), 287-296, (electronic) · Zbl 1192.60020
[7] Briant, M.; Einav, A., On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys., 163, 1108-1156 (2016) · Zbl 1342.35203
[8] Caflisch, R. E., The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys., 74, 71-95 (1980) · Zbl 0434.76065
[9] J.A. Cañizo, A. Einav, B. Lods, Trend to equilibrium for the Becker-Döring equations: an analogue of Cercignani’s conjecture, preprint, 2015.; J.A. Cañizo, A. Einav, B. Lods, Trend to equilibrium for the Becker-Döring equations: an analogue of Cercignani’s conjecture, preprint, 2015.
[10] Cañizo, J. A.; Lods, B., Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath, Nonlinearity, 5, 29, 1687-1715 (2016) · Zbl 1338.82026
[11] Carlen, E. A.; Carvalho, M. C.; Lu, X., On strong convergence to equilibrium for the Boltzmann equation with soft potentials, J. Stat. Phys., 135, 681-736 (2009) · Zbl 1191.76087
[12] Carleman, T., Problèmes mathématiques dans la théorie cinétique des gaz, Publications Scientifiques de l’Institut Mittag-Leffler, vol. 2 (1957) · Zbl 0077.23401
[13] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6, 209-408 (1993), Springer: Springer Berlin · Zbl 0802.35001
[14] Desvillettes, L.; Mouhot, C., Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54, 235-245 (2007) · Zbl 1141.35337
[15] Desvillettes, L.; Mouhot, C.; Villani, C., Celebrating Cercignani’s conjecture for the Boltzmann equation, Kinet. Relat. Models, 4, 277-294 (2011) · Zbl 1217.82064
[16] Fellner, K.; Poupaud, F.; Schmeiser, C., Existence and convergence to equilibrium of a kinetic model for cometary flows, J. Stat. Phys., 114, 1481-?1499 (2004) · Zbl 1072.82028
[17] Fröhlich, J.; Gang, Z., Exponential convergence to the Maxwell distribution for some class of Boltzmann equations, Comm. Math. Phys., 314, 525-554 (2012) · Zbl 1270.35100
[18] Gamba, I.; Panferov, V.; Villani, C., Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194, 253-282 (2009) · Zbl 1273.76373
[19] Grad, H., Principles of the kinetic theory of gases, (Flügge’s Handbuch des Physik, vol. XII (1958), Springer-Verlag), 205-294
[20] Gressman, P. T.; Strain, R. M., Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24, 771-847 (2011) · Zbl 1248.35140
[21] Guo, Y., Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169, 305-353 (2003) · Zbl 1044.76056
[22] Levermore, C. D.; Sun, W., Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels, Kinet. Relat. Models, 3, 335-?351 (2010) · Zbl 1203.82072
[23] Lods, B.; Mokhtar-Kharroubi, M., Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in \(L^1\)-spaces · Zbl 1387.35442
[24] Lods, B.; Mouhot, C.; Toscani, G., Relaxation rate, diffusion approximation and Fick’s law for inelastic scattering Boltzmann models, Kinet. Relat. Models, 1, 223-248 (2008) · Zbl 1144.35348
[25] Łoskot, K.; Rudnicki, R., Relative entropy and stability of stochastic semigroups, Ann. Polon. Math., 53, 139-145 (1991) · Zbl 0727.60035
[26] Mischler, S.; Wennberg, B., On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, 467-501 (1999) · Zbl 0946.35075
[27] Mokhtar-Kharroubi, M., Optimal spectral theory of the linear Boltzmann equation, J. Funct. Anal., 226, 21-47 (2005) · Zbl 1088.47033
[28] Montagnini, B.; Demuru, M.-L., Complete continuity of the free gas scattering operator in neutron thermalization theory, J. Math. Anal. Appl., 12, 49-57 (1965) · Zbl 0173.30201
[29] Mouhot, C., Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31, 1321-1348 (2006) · Zbl 1101.76053
[30] Mouhot, C.; Strain, R. M., Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl., 87, 515-535 (2007) · Zbl 1388.76338
[31] Pettersson, R., On weak and strong convergence to equilibrium for solutions to the linear Boltzmann equation, J. Stat. Phys., 72, 335-380 (1993) · Zbl 1099.82516
[32] Toscani, G.; Villani, C., On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys., 98, 1279-1309 (2000) · Zbl 1034.82032
[33] Villani, C., A review of mathematical topics in collisional kinetic theory, (Friedlander, S.; Serre, D., Handbook of Mathematical Fluid Dynamics, vol. 1 (2002), Elsevier: Elsevier Amsterdam, Netherlands; Boston, USA), 71-305 · Zbl 1170.82369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.