×

Polyconvexity and existence theorem for nonlinearly elastic shells. (English) Zbl 1393.74103

Summary: We present an existence theorem for a large class of nonlinearly elastic shells with low regularity in the framework of a two-dimensional theory involving the mean and Gaussian curvatures. We restrict our discussion to hyperelastic materials, that is to elastic materials possessing a stored energy function. Under some specific conditions of polyconvexity, coerciveness and growth of the stored energy function, we prove the existence of global minimizers. In addition, we define a general class of polyconvex stored energy functions which satisfies a coerciveness inequality.

MSC:

74K25 Shells
74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
74G25 Global existence of solutions for equilibrium problems in solid mechanics (MSC2010)
49J20 Existence theories for optimal control problems involving partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Anicic, S.: From the exact Kirchhoff-Love shell model to a thin shell model and a folded shell model. Ph.D. thesis, Joseph Fourier University, France (2001) · Zbl 0692.73062
[2] Anicic, S., A shell model allowing folds, 317-326, (2003), Milan · Zbl 1232.74069 · doi:10.1007/978-88-470-2089-4_29
[3] Antman, S.S., Ordinary differential equations of non-linear elasticity I: foundations of the theories of non-linearly elastic rods and shells, Arch. Ration. Mech. Anal., 61, 307-351, (1976) · Zbl 0354.73046 · doi:10.1007/BF00250722
[4] Antman, S.S., Ordinary differential equations of non-linear elasticity II: existence and regularity theory for conservative boundary value problems, Arch. Ration. Mech. Anal., 61, 353-393, (1976) · Zbl 0354.73047 · doi:10.1007/BF00250723
[5] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337-403 (1976/1977) · Zbl 0368.73040
[6] Bîrsan, M.; Neff, P., Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations, Math. Mech. Solids, 19, 376-397, (2014) · Zbl 1364.74060 · doi:10.1177/1081286512466659
[7] Bunoiu, R.; Ciarlet, P.G.; Mardare, C., Existence theorem for a nonlinear elliptic shell model, J. Elliptic Parabolic Equ., 1, 31-48, (2015) · Zbl 1386.74022 · doi:10.1007/BF03377366
[8] Ciarlet, P.G.; Coutand, D., An existence theorem for nonlinearly elastic “flexural” shells, J. Elast., 50, 261-277, (1998) · Zbl 0929.74067 · doi:10.1023/A:1007472922589
[9] Ciarlet, P.G.; Gogu, R.; Mardare, C., Orientation-preserving condition and polyconvexity on a surface: application to nonlinear shell theory, J. Math. Pures Appl. (9), 99, 704-725, (2013) · Zbl 1288.74049 · doi:10.1016/j.matpur.2012.10.006
[10] Ciarlet, P.G.; Gratie, L., On the existence of solutions to the generalized Marguerre-von Kármán equations, Math. Mech. Solids, 11, 83-100, (2006) · Zbl 1092.74025 · doi:10.1177/1081286505046480
[11] Ciarlet, P.G.; Mardare, C., A mathematical model of koiter’s type for a nonlinearly elastic “almost spherical” shell, C. R. Math. Acad. Sci. Paris, 354, 1241-1247, (2016) · Zbl 1349.74250 · doi:10.1016/j.crma.2016.10.011
[12] Friesecke, G.; James, R.D.; Mora, M.G.; Müller, S., Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence, C. R. Math. Acad. Sci. Paris, 336, 697-702, (2003) · Zbl 1140.74481 · doi:10.1016/S1631-073X(03)00028-1
[13] Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C, 28, 693-703, (1973)
[14] Koiter, W.T., On the nonlinear theory of thin elastic shells. I, II, III, Ned. Akad. Wet. Proc. Ser. B, 69, 1-17, (1966)
[15] Dret, H.; Raoult, A., The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74, 549-578, (1995) · Zbl 0847.73025
[16] Simo, J.C.; Fox, D.D., On a stress resultant geometrically exact shell model. I. formulation and optimal parametrization, Comput. Methods Appl. Mech. Eng., 72, 267-304, (1989) · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.