×

Sorting phenomena in a mathematical model for two mutually attracting/repelling species. (English) Zbl 1393.35248

The purpose of this paper is to study the interplay between (nonlinear) diffusion and nonlocal attractive/repulsive interactions. First a general survey of this interdisciplanary subject is given. The main issue is formula (13), the relation between one-dimensional steady states. It is proved that the supports of the two components of energy minimizers, a weak solution to (13), has zero Lebesgue measure. The stationary equation admits a unique solution. Finally, numerical simulations are illustrated by pictures. The proofs use Gâteaux derivative, Krein-Rutman theorem, implicit function theorem, Taylor formula.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B36 Pattern formations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K65 Degenerate parabolic equations
35R09 Integro-partial differential equations
92D25 Population dynamics (general)

References:

[1] G. Aletti, G. Naldi, and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), pp. 837–853, . · Zbl 1128.91043
[2] W. Alt, Degenerate diffusion equation with drift functionals modelling aggregation, Nonlinear Anal., 9 (1985), pp. 811–836. · Zbl 0594.35061
[3] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser-Verlag, Basel, 2008. · Zbl 1145.35001
[4] C. Appert-Rolland, P. Degond, and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heterog. Media, 6 (2011), pp. 351–381. · Zbl 1260.90051
[5] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Lett., 24 (2011), pp. 1927–1932. · Zbl 1236.49090
[6] J. Bedrossian, Large mass global solutions for a class of \(L^1\)-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models, Comm. Partial Differential Equations, 40 (2015), pp. 1119–1136. · Zbl 1350.35189
[7] D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media, RAIRO Modél. Math. Anal. Numér., 31 (1997), pp. 615–641. · Zbl 0888.73006
[8] A. L. Bertozzi, T. Laurent, and J. Rosado, \(L^p\) theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), pp. 45–83. · Zbl 1218.35075
[9] M. Bertsch, R. Dal Passo, and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition, Interfaces Free Bound., 12 (2010), pp. 235–250. · Zbl 1197.35296
[10] M. Bertsch, M. E. Gurtin, and D. Hilhorst, On interacting populations that disperse to avoid crowding: The case of equal dispersal velocities, Nonlinear Anal., 11 (1987), pp. 493–499. · Zbl 0646.92018
[11] M. Bertsch, M. E. Gurtin, D. Hilhorst, and L. A. Peletier, On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biol., 23 (1985), pp. 1–13. · Zbl 0596.35074
[12] M. Bertsch, D. Hilhorst, H. Izuhara, and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Differential Equations Appl., 4 (2012), pp. 137–157. · Zbl 1238.35161
[13] P. Biler, Growth and accretion of mass in an astrophysical model, Appl. Math. (Warsaw), 23 (1995), pp. 179–189. · Zbl 0838.35105
[14] A. Blanchet, E. Carlen, and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 261 (2012), pp. 2142–2230. · Zbl 1237.35155
[15] A. Blanchet, J. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurencot, and S. Lisini, A hybrid variational principle for the Keller-Segel system in \(\R^2\), ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 1553–1576. · Zbl 1334.35086
[16] A. Blanchet, J. A. Carrillo, and P. Laurencot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), pp. 133–168. · Zbl 1172.35035
[17] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 2006 (2006), 44. · Zbl 1112.35023
[18] S. Boi, V. Capasso, and D. Morale, Modeling the aggregative behavior of ants of the species Polyergus rufescens, Nonlinear Anal. Real World Appl., 1 (2000), pp. 163–176. · Zbl 1011.92053
[19] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases, Oxford Graduate Texts, Oxford University Press, Oxford, 2004. · Zbl 1155.76386
[20] M. Burger and M. Di Francesco, Large time behavior of nonlocal aggregation models with nonlinear diffusion, Netw. Heterog. Media, 3 (2008), pp. 749–785. · Zbl 1171.35328
[21] M. Burger, M. Di Francesco, and M. Franek, Stationary states of quadratic diffusion equations with long-range attraction, Commun. Math. Sci., 11 (2013), pp. 709–738. · Zbl 1282.35203
[22] M. Burger, R. Fetecau, and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), p. 397–424, . · Zbl 1302.35386
[23] J. A. Carrillo, Y.-P. Choi, and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, CISM Courses and Lect. 553, Springer, Vienna, 2014, pp. 1–46.
[24] J. A. Carrillo, S. Fagioli, F. Santambrogio, and M. Schmidtchen, Splitting Schemes & Segregation in Reaction-(Cross-)Diffusion Systems, preprint, , 2017.
[25] J. A. Carrillo, Y. Huang, F. S. Patacchini, and G. Wolansky, Numerical study of a particle method for gradient flows, Kinetic Related Models, 10 (2017), pp. 613–641. · Zbl 1354.65180
[26] J. A. Carrillo, Y. Huang, and M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species, SIAM J. Appl. Math., 78 (2018), pp. 1078–1104, . · Zbl 1392.35179
[27] J. A. Carrillo, R. J. McCann, and C. Villani, Contractions in the \(2\)-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), pp. 217–263. · Zbl 1082.76105
[28] J. A. Carrillo, F. S. Patacchini, P. Sternberg, and G. Wolansky, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), pp. 3708–3741, . · Zbl 1357.65146
[29] Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interaction, J. R. Soc. Interface, 11 (2014), 20131208, .
[30] M. Cicalese, L. De Luca, M. Novaga, and M. Ponsiglione, Ground states of a two phase model with cross and self attractive interactions, SIAM J. Math. Anal., 48 (2016), pp. 3412–3443, . · Zbl 1352.49009
[31] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. · Zbl 0559.47040
[32] L. Derbel and P. Jabin, The set of concentration for some hyperbolic models of chemotaxis, J. Hyperbolic Differ. Equ., 4 (2007), pp. 331–349. · Zbl 1118.35001
[33] M. Di Francesco, A. Esposito, and S. Fagioli, Nonlinear degenerate cross-diffusion systems with nonlocal interaction, Nonlinear Anal., 169 (2018), pp. 94–117. · Zbl 1432.35114
[34] M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), pp. 2777–2808. · Zbl 1278.35003
[35] M. Di Francesco and S. Fagioli, A nonlocal swarm model for predators–prey interactions, Math. Models Methods Appl. Sci., 26 (2016), pp. 319–355. · Zbl 1334.35357
[36] M. Di Francesco, S. Fagioli, M. D. Rosini, and G. Russo, Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows, preprint, , 2016.
[37] M. Di Francesco and Y. Jaafra, Multiple Large-Time Behavior of Nonlocal Interaction Equations with Quadratic Diffusion, preprint, , 2017.
[38] B. Düring, P. Markowich, J.-F. Pietschmann, and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 3687–3708. · Zbl 1195.91127
[39] E. E. Espejo, A. Stevens, and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), pp. 317–338. · Zbl 1186.35098
[40] H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986), pp. 12–35. · Zbl 0642.35038
[41] H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), pp. 77–114. · Zbl 0918.35064
[42] E. Geigant and M. Stoll, Stability of peak solutions of a non-linear transport equation on the circle, Electron. J. Differential Equations, 2012 (2012), 157. · Zbl 1256.35189
[43] L. Gosse and G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006), pp. 1203–1227, . · Zbl 1122.76064
[44] M. Herrero and J. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), pp. 177–194. · Zbl 0866.92009
[45] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103–165. · Zbl 1071.35001
[46] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, II, Jahresber. Deutsch. Math.-Verein., 106 (2004), pp. 51–69. · Zbl 1072.35007
[47] D. Horstmann and M. Lucia, Nonlocal elliptic boundary value problems related to chemotactic movement of mobile species, in Mathematical Analysis on the Self-Organization and Self-Similarity, RIMS Kôkyûroku Bessatsu B15, Res. Inst. Math. Sci. (RIMS), Kyoto, Japan, 2009, pp. 39–72. · Zbl 1194.35470
[48] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824. · Zbl 0746.35002
[49] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1–17, . · Zbl 0915.35120
[50] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), pp. 1963–2001. · Zbl 1326.35175
[51] G. Kaib, Stationary States of an Aggregation Equation with Degenerate Diffusion and Attractive Potential, Ph.D. thesis, University of Münster, Münster, Germany, 2016. · Zbl 1369.35016
[52] G. Kaib, Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential, SIAM J. Math. Anal., 49 (2017), pp. 272–296, . · Zbl 1357.35274
[53] K. Kang, I. Primi, and J. Velázquez, A 2D-model of cell sorting induced by propagation of chemical signals along spiral waves, Comm. Partial Differential Equations, 38 (2013), pp. 1069–1122. · Zbl 1479.35520
[54] E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), pp. 399–415. · Zbl 1170.92306
[55] I. Kim and A. R. Mészáros, On Nonlinear Cross-Diffusion Systems: An Optimal Transport Approach, preprint, , 2017.
[56] P. Laurencot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem, Calc. Var. Partial Differential Equations, 47 (2013), pp. 319–341. · Zbl 1264.35129
[57] G. Lemon and J. King, A functional differential equation model for biological cell sorting due to differential adhesion, Math. Models Methods Appl. Sci., 23 (2013), pp. 93–126. · Zbl 1257.92021
[58] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120346. · Zbl 1292.35149
[59] A. Magni, C. Mantegazza, and M. Novaga, Motion by curvature on planar networks II, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15 (2016), pp. 117–144. · Zbl 1339.53063
[60] S. Matsukuma and A. Durston, Chemotactic cell sorting in Dictyostelium discoideum, J. Embryol. Exp. Morphol., 50 (1979), pp. 243–251.
[61] M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology, Adv. Biophys., 15 (1982), pp. 19–65.
[62] D. Morale, V. Capasso, and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), pp. 49–66. · Zbl 1055.92046
[63] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), pp. 1077–1092. · Zbl 0203.43701
[64] J. Moser, On a nonlinear problem in differential geometry, Proceedings of the Symposium on Dynamical Systems (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 273–280. · Zbl 0275.53027
[65] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), pp. 581–601. · Zbl 0843.92007
[66] K. Oelschläger, Large systems of interacting particles and porous medium equation, J. Differential Equations, 88 (1990), pp. 294–346. · Zbl 0734.60101
[67] K. J. Painter, Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis, Bull. Math. Biol., 71 (2009), pp. 1117–1147. · Zbl 1168.92010
[68] B. Perthame, Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Springer, New York, 2015. · Zbl 1333.35001
[69] K. Post, A System of Non-Linear Partial Differential Equations Modeling Chemotaxis with Sensitivity Functions, Ph.D. thesis, Humboldt University of Berlin, Berlin, Germany, 1999. · Zbl 1032.92006
[70] I. Primi, A. Stevens, and J. J. L. Velázquez, Mass-selection in alignment models with non-deterministic effects, Comm. Partial Differential Equations, 34 (2009), pp. 419–456. · Zbl 1169.82022
[71] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), pp. 531–556. · Zbl 0637.35007
[72] A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math, 61 (2000), pp. 183–212, . · Zbl 0963.60093
[73] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), pp. 841–976. · Zbl 1212.35240
[74] Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), pp. 133–180. · Zbl 1212.35241
[75] K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, Internat. J. Modern Phys. C, 11 (2000), pp. 1157–1166.
[76] C. M. Topaz, A. L. Bertozzi, and M. Lewis, A nonlocal continuum model for biological aggregation., Bull. Math. Biol., 68 (2006), pp. 1601–1623. · Zbl 1334.92468
[77] B. Vasiev and C. Weijer, Modeling chemotactic cell sorting during Dictyostelium discoideum mound formation, Biophys. J., 76 (1999), pp. 595–605.
[78] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, UK, 2007. · Zbl 1107.35003
[79] A. Voss-Böhme and A. Deutsch, The cellular basis of cell sorting kinetics, J. Theoret. Biol., 263 (2010), pp. 419–436. · Zbl 1406.92066
[80] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Ration. Mech. Anal., 119 (1992), pp. 355–391. · Zbl 0774.76069
[81] G. Wolansky, Multi-component chemotactic system in the absence of conflict, European J. Appl. Math., 13 (2002), pp. 641–661. · Zbl 1008.92008
[82] G. Wolansky, Chemotactic systems in the presence of conflicts: A new functional inequality, J. Differential Equations, 261 (2016), pp. 5119–5143. · Zbl 1351.35240
[83] J. Zinsl and D. Matthes, Transport distances and geodesic convexity for systems of degenerate diffusion equations, Calc. Var. Partial Differential Equations, 54 (2015), pp. 3397–3438. · Zbl 1342.49067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.