×

Computation of all rational solutions of first-order algebraic ODEs. (English) Zbl 1393.34008

Summary: In this paper, we discuss three different approaches to attack the problem of determining all rational solutions for a first-order algebraic ordinary differential equation (AODE). We first give a sufficient condition for first-order AODEs to have the property that poles of rational solutions can only occur at the zeros of the leading coefficient. A combinatorial approach is presented to determine all rational solutions, if there are any, of the family of first-order AODEs satisfying this condition. Algebraic considerations based on algebraic function theory yield another algorithm for quasi-linear first-order AODEs. And finally ideas from algebraic geometry combine these results to an algorithm for finding all rational solutions of parametrizable first-order AODEs.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
14H45 Special algebraic curves and curves of low genus
68W30 Symbolic computation and algebraic computation
34A09 Implicit ordinary differential equations, differential-algebraic equations

Software:

CASA
Full Text: DOI

References:

[1] Carnicer, M., The Poincaré problem in the nondicritical case, Ann. of Math. (2), 140, 2, 289-294, (1994) · Zbl 0821.32026
[2] Chen, G.; Ma, Y., Algorithmic reduction and rational general solutions of first order algebraic differential equations, (Wang, D.; Zheng, Z., Differential Equations with Symbolic Computation, (2005), Birkhäuser Basel), 201-212 · Zbl 1109.34001
[3] Eremenko, A., Rational solutions of first-order differential equations, Ann. Acad. Sci. Fenn. Math., 23, 1, 181-190, (1998) · Zbl 0911.30025
[4] Feng, R.; Gao, X., Rational general solutions of algebraic ordinary differential equations, (Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation. ISSAC ’04, (2004), ACM New York, NY, USA), 155-162 · Zbl 1134.34302
[5] Feng, R.; Gao, X.-S., A polynomial time algorithm for finding rational general solutions of first order autonomous odes, J. Symbolic Comput., 41, 7, 739-762, (2006) · Zbl 1130.65069
[6] Fuchs, L., Über differentialgleichungen, deren integrale feste verzweigungspunkte besitzen, Sitzungsber. Akad., 11, 3, 251-273, (1884)
[7] Grasegger, G.; Winkler, F., Symbolic solutions of first-order algebraic odes, (Computer Algebra and Polynomials, Lecture Notes in Computer Science, vol. 8942, (2015), Springer International Publishing), 94-104 · Zbl 1434.34019
[8] Hubert, E., The general solution of an ordinary differential equation, (Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC ’96, (1996), ACM New York, NY, USA), 189-195 · Zbl 0919.34002
[9] Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen I, (1983), B. G. Teubner Stuttgart · JFM 68.0179.01
[10] Kovacic, J., An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput., 2, 1, 3-43, (1986) · Zbl 0603.68035
[11] Krushel’nitskij, A., Polynomial solutions of algebraic differential equations, Differ. Equ., 24, 12, 1393-1398, (1988) · Zbl 0679.34050
[12] Malmquist, J., Sur LES fonctions a un nombre fini de branches définies par LES équations différentielles du premier ordre, Acta Math., 36, 297-343, (1913) · JFM 44.0384.01
[13] Matsuda, M., First order algebraic differential equations—A differential algebraic approach, Lecture Notes in Mathematics, vol. 804, (1980), Springer-Verlag Berlin · Zbl 0447.12014
[14] Ngô, L.; Winkler, F., Rational general solutions of first order non-autonomous parametrizable odes, J. Symbolic Comput., 45, 12, 1426-1441, (2010) · Zbl 1213.34007
[15] Ngô, L.; Winkler, F., Rational general solutions of planar rational systems of autonomous odes, J. Symbolic Comput., 46, 10, 1173-1186, (2011) · Zbl 1235.34004
[16] Poincaré, H., Sur un théorème de M. Fuchs, Acta Math., 7, 1-32, (1885) · JFM 17.0279.01
[17] Sendra, J.; Winkler, F.; Pérez-Díaz, S., Rational algebraic curves, A computer algebra approach, Algorithms and Computation in Mathematics, vol. 22, (2008), Springer-Verlag Berlin, Heidelberg · Zbl 1129.14083
[18] Stichtenoth, H., Algebraic function fields and codes, (2008), Springer Publishing Company, Incorporated
[19] Vo, N.; Grasegger, G.; Winkler, F., Deciding the existence of rational general solutions for first-order algebraic odes, J. Symbolic Comput., 87, 127-139, (2018) · Zbl 1390.34007
[20] Vo, N.; Winkler, F., Algebraic general solutions of first order algebraic odes, (Gerdt, P.; Koepf, W.; Seiler, M.; Vorozhtsov, V., Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, vol. 9301, (2015), Springer International Publishing Cham) · Zbl 1400.34019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.