×

Howe-Moore type theorems for quantum groups and rigid \(C^{\ast}\)-tensor categories. (English) Zbl 1393.18003

The original Howe-Moore theorem referenced in the title of this paper (from [R. Howe and C. Moore, J. Funct. Anal. 32, 72–96 (1979; Zbl 0404.22015)]) states: for any connected non-compact simple Lie group with finite center, the matrix coefficients of every unitary representation without invariant vectors vanish at infinity. More generally, a locally compact group is said to have the Howe-Moore property if this property of matrix coefficients holds. Categories of unitary modules for locally compact groups are examples of rigid \(C^*\)-tensor categories: unitary modules have tensor products and duals, and homomorphisms have adjoints and norms, satisfying natural properties. Other examples of rigid \(C^*\)-tensor categories come from representation categories of quantum groups and subfactors.
In this paper, the authors give a definition of Howe-Moore property for general rigid \(C^*\)-tensor categories in terms of the vanishing at infinity of completely positive multipliers, which are certain complex-valued functions on the set of equivalence classes of irreducible objects introduced by S. Popa and S. Vaes, Comm. Math. Phys. 340, No. 3, 1239–1280 (2015; Zbl 1335.46055)]. Their main result is that a rigid \(C^*\)-tensor category has the Howe-Moore property if its fusion algebra is isomorphic to that of a connected compact simple Lie group with trivial center. Examples of rigid \(C^*\)-tensor categories satisfying this condition include unitary representations of \(q\)-deformations of connected compact simple Lie groups with trivial center, with \(q\in(0,1]\), as well as the category of \(M\)-bimodules associated with the Jones tower of a type-\(II_1\) subfactor \(N\subseteq M\) with Temperley-Lieb-Jones standard invariant \(\mathrm{TLJ}(\lambda)\) for \(\lambda^{-1}\geq 4\).
Additionally, the authors prove a characterization of central states on the quantum coordinate algebra of \(\mathrm{SU}_q(N)\) in terms of \(\mathrm{SU}(N)\)-bi-invariant positive-definite functions on \(\mathrm{SL}(N,\mathbb{C})\). Such central states coincide with the completely positive multipliers used to define the Howe-Moore property.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
20G42 Quantum groups (quantized function algebras) and their representations
46L10 General theory of von Neumann algebras

References:

[1] Y.Arano, Unitary spherical representations of Drinfeld doubles, J. Reine Angew. Math. (2016), published ahead of print, doi:10.1515/crelle-2015-0079. · Zbl 1396.81117
[2] Y.Arano, Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups, Comm. Math. Phys.351 (2017), 1137-1147.10.1007/s00220-016-2704-x · Zbl 1362.22013 · doi:10.1007/s00220-016-2704-x
[3] U.Bader and T.Gelander, Equicontinuous actions of semisimple groups, Groups Geom. Dyn.11 (2017), 1003-1039.10.4171/GGD/420 · Zbl 1376.22013
[4] M.Burger and S.Mozes, Groups acting on trees: from local to global structure, Publ. Math. Inst. Hautes Études Sci.92 (2000), 113-150.10.1007/BF02698915 · Zbl 1007.22012
[5] C.Ciobotaru, A unified proof of the Howe-Moore property, J. Lie Theory25 (2015), 65-89. · Zbl 1315.22005
[6] M.Daws, A.Skalski and A.Viselter, Around Property (T) for quantum groups, Comm. Math. Phys.353 (2017), 69-118.10.1007/s00220-017-2862-5 · Zbl 1371.46060
[7] K.De Commer, A.Freslon and M.Yamashita, CCAP for universal discrete quantum groups, Comm. Math. Phys.331 (2014), 677-701.10.1007/s00220-014-2052-7 · Zbl 1323.46046
[8] R.Ellis and M.Nerurkar, Weakly almost periodic flows, Trans. Amer. Math. Soc.313 (1989), 103-119.10.1090/S0002-9947-1989-0930084-3 · Zbl 0674.54026
[9] S. K.Ghosh and C.Jones, Annular representation theory for rigid C^∗ -tensor categories, J. Funct. Anal.270 (2016), 1537-1584.10.1016/j.jfa.2015.08.017 · Zbl 1375.46039
[10] T.Hayashi and S.Yamagami, Amenable tensor categories and their realizations as AFD bimodules, J. Funct. Anal.172 (2000), 19-75.10.1006/jfan.1999.3521 · Zbl 0996.46025
[11] S.Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions (Academic Press, Orlando, FL, 1984). · Zbl 0543.58001
[12] R. E.Howe and C. C.Moore, Asymptotic properties of unitary representations, J. Funct. Anal.32 (1979), 72-96.10.1016/0022-1236(79)90078-8 · Zbl 0404.22015
[13] V. F. R.Jones, Index for subfactors, Invent. Math.72 (1983), 1-25.10.1007/BF01389127 · Zbl 0508.46040 · doi:10.1007/BF01389127
[14] V. F. R.Jones, Planar algebras, I, Preprint (1999), arXiv:math.QA/9909027. · Zbl 1328.46049
[15] V. F. R.Jones, S.Morrison and N.Snyder, The classification of subfactors of index at most 5, Bull. Amer. Math. Soc.51 (2014), 277-327.10.1090/S0273-0979-2013-01442-3 · Zbl 1301.46039
[16] B. P. A.Jordans, A classification of SU(d)-type C^∗ -tensor categories, Internat. J. Math.25 (2014), 14050081.10.1142/S0129167X14500815 · Zbl 1312.17010 · doi:10.1142/S0129167X14500815
[17] V.Kac, Infinite-dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).10.1017/CBO9780511626234 · Zbl 0716.17022
[18] D. A.Kazhdan and H.Wenzl, Reconstructing monoidal categories, in I. M. Gel’fand seminar, Advances in Soviet Mathematics, vol. 16 (American Mathematical Society, Providence, RI, 1993), 111-136. · Zbl 0786.18002
[19] A.Klimyk and K.Schmüdgen, Quantum groups and their representations (Springer, Berlin, 1997).10.1007/978-3-642-60896-4 · Zbl 0891.17010
[20] J.Kustermans and S.Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. (4)33 (2000), 837-934.10.1016/S0012-9593(00)01055-7 · Zbl 1034.46508
[21] A.Lubotzky and S.Mozes, Asymptotic properties of unitary representations of tree automorphisms, in Harmonic analysis and discrete potential theory, Frascati, 1991 (Plenum, New York, 1992), 289-298.10.1007/978-1-4899-2323-3_24
[22] T.Masuda, Classification of Roberts actions of strongly amenable<![CDATA \([C^{\ast }]]\)>-tensor categories on the injective factor of type<![CDATA \([\mathit{III}_1]]\)>, Preprint (2016), arXiv:1611.00476.
[23] S.Neshveyev and L.Tuset, Compact quantum groups and their representation categories (Société Mathématique de France, Paris, 2013). · Zbl 1316.46003
[24] S.Neshveyev and M.Yamashita, Drinfeld center and representation theory for monoidal categories, Comm. Math. Phys.345 (2016), 385-434.10.1007/s00220-016-2642-7 · Zbl 1359.46047
[25] A.Ocneanu, Chirality for operator algebras, in Subfactors, Kyuzeso, 1993 (World Scientific, River Edge, NJ, 1994), 39-63. · Zbl 0927.46032
[26] S.Popa, Classification of amenable subfactor of type II, Acta Math.172 (1994), 163-255.10.1007/BF02392646 · Zbl 0853.46059 · doi:10.1007/BF02392646
[27] S.Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math.120 (1995), 347-389.10.1007/BF01241137 · Zbl 0831.46069 · doi:10.1007/BF01241137
[28] S.Popa and S.Vaes, Representation theory for subfactors, 𝜆-lattices and C^∗ -tensor categories, Comm. Math. Phys.340 (2015), 1239-1280.10.1007/s00220-015-2442-5 · Zbl 1335.46055
[29] W. A.Veech, Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math.88 (1979), 55-68.10.1007/BF01305857 · Zbl 0438.43009 · doi:10.1007/BF01305857
[30] S. L.Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci.23 (1987), 117-181.10.2977/prims/1195176848 · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[31] R. J.Zimmer, Ergodic theory and semisimple groups (Birkhäuser, Basel, 1984).10.1007/978-1-4684-9488-4 · Zbl 0571.58015 · doi:10.1007/978-1-4684-9488-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.