×

Prime ideals of the enveloping algebra of the Euclidean algebra and a classification of its simple weight modules. (English) Zbl 1393.17023

Summary: A classification of the simple weight modules is given for the (6-dimensional) Euclidean Lie algebra \(\mathfrak{e}(3) = \mathfrak{sl}_{2} \ltimes V_{3}\). As an intermediate step, a classification of all simple modules is given for the centralizer \(C\) of the Cartan element \(H\) (in the universal enveloping algebra \(\mathcal{U} = \operatorname{U}(\mathfrak{e}(3))\)). Generators and defining relations for the algebra \(C\) are found (there are three quadratic relations and one cubic relation). The algebra \(C\) is a Noetherian domain of Gelfand-Kirillov dimension 5. Classifications of prime, primitive, completely prime, and maximal ideals are given for the algebra \(\mathcal{U}\).{
©2017 American Institute of Physics}

MSC:

17B35 Universal enveloping (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Aizawa, N.; Isaac, P. S.; Kimura, Y., Highest weight representations and Kac determinants for a class of conformal Galilei algebras with central extension, Int. J. Math., 23, 11, 1-25 (2012) · Zbl 1351.17007 · doi:10.1142/S0129167X12501182
[2] Bagchi, A.; Gopakumar, R., Galilean conformal algebras and AdS/CFT, J. High Energy Phys., 07, 037 (2009) · doi:10.1088/1126-6708/2009/07/037
[3] Bavula, V. V., Simple D[X, Y; σ, a]-modules, Ukr. Math. J., 44, 12, 1500-1511 (1992) · Zbl 0810.16003 · doi:10.1007/BF01061275
[4] Bavula, V. V., Generalized Weyl algebras and their representations, St. Petersburg Math. J., 4, 1, 71-92 (1993) · Zbl 0807.16027
[5] Bavula, V. V.; Lu, T., The prime spectrum and simple modules over the quantum spatial ageing algebra, Algebra Represent. Theory, 19, 5, 1109 (2016) · Zbl 1410.17013 · doi:10.1007/s10468-016-9613-8
[6] Bavula, V. V.; Lu, T., The quantum Euclidean algebra and its prime spectrum, Israel J. Math. · Zbl 1419.17020
[7] Bavula, V. V. and Lu, T., “The universal enveloping algebra \(U(𝔰𝔩_2\)⋉\(V_2)\), its prime spectrum and a classification of its simple weight modules” (submitted). · Zbl 1396.17011
[8] Block, R. E., The irreducible representations of the Lie algebra 𝔰𝔩(2) and of the Weyl algebra, Adv. Math., 39, 69-110 (1981) · Zbl 0454.17005 · doi:10.1016/0001-8708(81)90058-X
[9] Brown, K. A.; Goodearl, K. R., Lectures on Algebraic Quantum Groups, Advanced Course in Mathematics CRM Barcelona, 2 (2002) · Zbl 1027.17010
[10] Brown, K. A.; Goodearl, K. R.; Lenagan, T. H., Prime ideals in differential operator rings. Catenarity, Trans. Am. Math. Soc., 317, 2, 749-772 (1990) · Zbl 0692.16002 · doi:10.1090/S0002-9947-1990-0946215-3
[11] Cai, Y.; Shen, R.; Zhang, J., Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra 𝔢(3), J. Pure Appl. Algebra, 220, 1419-1433 (2016) · Zbl 1395.17016 · doi:10.1016/j.jpaa.2015.09.009
[12] Douglas, A.; de Guise, H., Some nonunitary, indecomposable representations of the Euclidean algebra 𝔢(3), J. Phys. A: Math. Theor., 43, 085204 (2010) · Zbl 1188.22013 · doi:10.1088/1751-8113/43/8/085204
[13] Douglas, A.; Repka, J., Embeddings of the Euclidean algebra 𝔢(3) into 𝔰𝔩(4, ℂ) and restrictions of irreducible representations of 𝔰𝔩(4, ℂ), J. Math. Phys., 52, 013504 (2011) · Zbl 1314.22009 · doi:10.1063/1.3531984
[14] Goodearl, K. R.; Launois, S.; Lenagan, T. H., Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves, Math. Z., 269, 1-2, 29-45 (2011) · Zbl 1234.16018 · doi:10.1007/s00209-010-0714-5
[15] Goodearl, K. R.; Lenagan, T. H., Catenarity in quantum algebras, J. Pure Appl. Algebra, 111, 1-3, 123-142 (1996) · Zbl 0864.16018 · doi:10.1016/0022-4049(95)00120-4
[16] Goodearl, K. R.; Lenagan, T. H., Prime ideals invariant under winding automorphisms in quantum matrices, Int. J. Math., 13, 5, 497-532 (2002) · Zbl 1054.16030 · doi:10.1142/S0129167X02001393
[17] Goodearl, K. R.; Letzter, E. S., Prime factor algebras of the coordinate ring of quantum matrices, Proc. Am. Math. Soc., 121, 1017-1025 (1994) · Zbl 0812.16039 · doi:10.1090/S0002-9939-1994-1211579-1
[18] Goodearl, K. R.; Letzter, E. S., Prime and primitive spectra of multiparameter quantum affine spaces (1996) · Zbl 0904.16001
[19] Isham, C. J.; Klauder, J. R., Coherent states for n-dimensional Euclidean groups E(n) and their application, J. Math. Phys., 32, 3, 607-620 (1991) · Zbl 0735.22012 · doi:10.1063/1.529402
[20] Launois, S., Primitive ideals and automorphism group of \(<mml:math display=''inline`` overflow=''scroll``> \), J. Algebra Appl., 6, 1, 21-47 (2007) · Zbl 1168.17009 · doi:10.1142/S0219498807002053
[21] Launois, S.; Lenagan, T. H., Primitive ideals and automorphisms of quantum matrices, Algebra Represent. Theory, 10, 4, 339-365 (2007) · Zbl 1124.16037 · doi:10.1007/s10468-007-9059-0
[22] Lopes, S. A., Primitive ideals of \(<mml:math display=''inline`` overflow=''scroll``> \), Commun. Algebra, 34, 12, 4523-4550 (2006) · Zbl 1163.16032 · doi:10.1080/00927870600936682
[23] Lü, R.; Mazorchuk, V.; Zhao, K., On simple modules over conformal Galilei algebras, J. Pure Appl. Algebra, 218, 10, 1885-1899 (2014) · Zbl 1343.17008 · doi:10.1016/j.jpaa.2014.02.012
[24] Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J., Exotic Galilean conformal symmetry and its dynamical realisations, Phys. Lett. A, 357, 1, 1-5 (2006) · Zbl 1236.81129 · doi:10.1016/j.physleta.2006.04.016
[25] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings, 30 (2001) · Zbl 0980.16019
[26] Miller, W., Some applications of the representation theory of the Euclidean group in three-space, Commun. Pure Appl. Math., 17, 4, 527-540 (1964) · Zbl 0136.29901 · doi:10.1002/cpa.3160170409
[27] Negro, J.; Del Olmo, M. A.; Rodriguez-Marco, A., Nonrelativistic conformal groups, J. Math. Phys., 38, 7, 3786-3809 (1997) · Zbl 0903.70012 · doi:10.1063/1.532067
[28] Peshkin, M., Elementary algebra of the Euclidean group, with application to magnetic charge quantization, Ann. Phys., 66, 2, 542-547 (1971) · doi:10.1016/0003-4916(71)90069-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.