×

LCM-stability and formal power series. (English) Zbl 1393.13042

It is well-known that the LCM-stability (an extension of integral domains \(A\subseteq B\) is called LCM-stable if for any couple \((a,b)\in A^2,\) \((aA\cap bA)B= aB\cap bB\)) of an extension \(A\subseteq B\) entails the LCM-stability of \(A[X]\subseteq B[X]\) (resp., \(A[\![X]\!]\subseteq B[\![X]\!]\)) when \(A\) is a locally GCD or Krull domain [H. Uda, Hiroshima Math. J. 13, 357–377 (1983; Zbl 0531.13001); Hiroshima Math. J. 18, No. 1, 47–52 (1988; Zbl 0683.13002)] (resp., when \(A\) is a Dedekind domain [J. T. Condo, Proc. Am. Math. Soc. 123, No. 8, 2333–2341 (1995; Zbl 0834.13017)]).
In the paper under review, the authors study whether the D-stability (resp., \(t\)-linkedness) of an extension \(A\subseteq B\) entails the D-stability (resp., \(t\)-linkedness) of \(A[X]\subseteq B[X]\) (resp., \(A[\![X]\!]\subseteq B[\![X]\!]\)). First, we need to collect some necessary notions to understand the content of the paper. Let \(A\subseteq B\) be an extension of integral domains. We say that the extension \(A\subseteq B\) is D-stable if for any divisorial ideal \(I\) of \(A\) we have \((IB)^{-1}=I^{-1}B\). Also, the extension \(A\subseteq B\) is said to be \(t\)-linked if for each finitely generated ideal \(I\) of \(A\) such that \(I^{-1}=A\) we have \((IB)^{-1}=B\). The authors show that if \(A\) is an integrally closed domain, then the extension \(A\subseteq B\) is D-stable if and only if \(A[X]\subseteq B[X]\) is D-stable. For the power series case, if \(A\) is a regular ring, then \(A\subseteq B\) is D-stable if and only if \(A[\![X]\!]\subseteq B[\![X]\!]\) is D-stable. Also, if \(A\subseteq B\) is an extension of Krull domains, then \(A[\![X]\!]\subseteq B[\![X]\!]\) is \(t\)-linked if and only if the extensions \(A\subseteq B\) and \(A[\![X]\!]_{A^*}\subseteq B[\![X]\!]_{B^*}\) are \(t\)-linked. Finally, the authors give an example of an LCM-stable extension \(A\subseteq B\) such that the extension \(A[\![X]\!]\subseteq B[\![X]\!]\) is not LCM-stable.

MSC:

13G05 Integral domains
13F25 Formal power series rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13B99 Commutative ring extensions and related topics
13A15 Ideals and multiplicative ideal theory in commutative rings

References:

[1] D. D. Anderson and B. G. Kang, Content Formulas for Polynomials and Power Series and Complete Integral Closure, J. Algebra, 181 (1996), 82-94. · Zbl 0857.13017
[2] D. D. Anderson, E. G. Houston and M. Zafrullah, t-linked extensions, the t-class group, and Nagata’s theorem, J. Pure Appl. Algebra, 86 (1993), 109-124. · Zbl 0777.13002
[3] J. T. Arnold and J. Brewer, When D½½X P½½X is a valuation ring, Proc. Amer. Math. Soc., 37 (1973), 326-332. · Zbl 0252.13008
[4] S. El Baghdadi, S. Gabelli and M. Zafrullah, Unique representation domains, II, J. Pure Appl. Algebra, 212 (2008), 376-393. · Zbl 1131.13002
[5] V. Barucci, Mori Domains, In: S. T. Chapman and S. Glaz (Eds.), Non-Noetherian Commutative Ring Theory, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 520 (2000), 57-73. · Zbl 0964.00012
[6] A. Benhissi, Les Anneaux De Se ´ries Formelles, Queen’s Papers in Pure and Applied Mathematics 124, Queen’s University, Kingston, 2003. · Zbl 1054.13010
[7] G. W. Chang, H. Kim, and J. W. Lim, Two generalizations of LCM-stable extensions, J. Korean Math. Soc., 50 (2013), 393-410. · Zbl 1272.13004
[8] G. W. Chang and D. Y. Oh, When DððX ÞÞ and DffX gg are Pru ¨fer domains, J. Pure Appl. Algebra, 216 (2012), 276-279. · Zbl 1236.13002
[9] C. Chevalley, La notion d’anneau de de ´composition, Nagoya Math. J., 7 (1954), 21-33. · Zbl 0057.27003
[10] J. T. Condo, LCM-stability of power series extensions characterizes Dedekind domains, Proc. Amer. Math. Soc., 123 (1995), 2333-2341. · Zbl 0834.13017
[11] D. Costa, J. Mott and M. Zafrullah, The construction D þ XD S ½X , J. Algebra, 53 (1978), 423-439. · Zbl 0407.13003
[12] D. E. Dobbs and E. G. Houston, On t-specðR½½X Þ, Canad. Math. Bull., 38 (1995), 187-195. · Zbl 0847.13005
[13] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Pru ¨fer v-multiplication domains, Comm. Algebra, 17 (1989), 2835-2852. · Zbl 0691.13015
[14] D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc., 27(3) (1971), 427-433. · Zbl 0219.13023
[15] R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, Berlin, Heidelberg, New York, 1973. · Zbl 0256.13001
[16] R. Gilmer, Finite element factorization in group rings, Lecture Notes in Pure and Appl. Math., 7 (1974), 47-61. · Zbl 0275.13019
[17] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. · Zbl 0248.13001
[18] S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc., 129 (2000), 2833-2843. · Zbl 0971.13003
[19] J. Querre, Ide ´aux divisoriels d’un anneau de polyno ˆmes, J. Algebra, 64 (1980), 270-284. · Zbl 0441.13012
[20] J. Mott and M. Zafrullah, On Pru ¨fer v-multiplication domains, Manuscripta Math., 35 (1981), 1-26. · Zbl 0477.13007
[21] J. Sato and K. Yoshida, The LCM-stability on polynomial extensions, Math. Rep. Toyama Univ., 10 (1987), 75-84. · Zbl 0644.13002
[22] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J., 13 (1983), 357-377. · Zbl 0531.13001
[23] H. Uda, G 2 -stableness and LCM-stableness, Hiroshima Math. J., 18 (1988), 47-52. · Zbl 0683.13002
[24] M. Zafrullah, Rigid elements in GCD domains, J. Natur. Sci. and Math., 17 (1977), 7-14. Walid Maaref Department of Mathematics Faculty of Sciences University of Monastir Republic of Tunisia E-mail: walid.maaref@yahoo.fr Ali Benhissi Department of Mathematics Faculty of Sciences University of Monastir Republic of Tunisia E-mail: ali_benhissi@yahoo.fr · Zbl 0485.13005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.