×

Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays. (English) Zbl 1392.93038

Summary: This paper focuses on the globally exponential stability in Lagrange sense for Takagi-Sugeno (T-S) fuzzy Cohen-Grossberg neural networks with time-varying delays. By employing Lyapunov method and delay inequality technique, we analyze two different types of activation functions which include both Lipschitz function and general activation functions, several easily verifiable sufficient criteria about linear matrix inequality form are obtained to guarantee the Lagrange exponential stability of Cohen-Grossberg neural networks with time varying delays which are represented by T-S fuzzy models. Meanwhile, the estimations of the globally exponentially attractive sets are given. Here, the existence and uniqueness of the equilibrium points need not be considered. Finally, two numerical examples with simulations are given to illustrate the effectiveness of the theoretical results.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
34D23 Global stability of solutions to ordinary differential equations
34K20 Stability theory of functional-differential equations
34K36 Fuzzy functional-differential equations
Full Text: DOI

References:

[1] Cohen, M.; Grossberg, S., Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern., 13, 815-826, (1983) · Zbl 0553.92009
[2] Lu, W.; Chen, T. P., New conditions on global stability of Cohen-Grossberg neural networks, Neural Comput., 15, 1173-1189, (2003) · Zbl 1086.68573
[3] Wang, L.; Zou, X., Exponential stability of Cohen-Grossberg neural networks, Neural Netw., 15, 415-422, (2002)
[4] Jiang, M. H.; Shen, Y.; Liao, X. X., Boundedness and global exponential stability for generalized Cohen-Grossberg neural networks with variable delay, Appl. Math. Comput., 172, 379-393, (2006) · Zbl 1090.92004
[5] Li, T.; Fei, S. M., Stability analysis of Cohen-Grossberg neural networks with time-varying and distributed delays, Neurocomputing, 71, 1069-1081, (2008)
[6] Cao, J.; Li, X., Stability in delayed Cohen-Grossberg neural networks: LMI optimization approach, Physica D, 212, 54-65, (2005) · Zbl 1097.34053
[7] Yuan, K.; Cao, J.; Li, H. X., Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 36, 1356-1363, (2006)
[8] Arik, S.; Orman, Z., Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Phys. Lett. A, 341, 410-421, (2005) · Zbl 1171.37337
[9] Huang, C. C.; Cheng, C. J.; Liao, T. L., Globally exponential stability of generalized Cohen-Grossberg neural networks with delays, Phys. Lett. A, 319, 157-166, (2003) · Zbl 1073.82597
[10] Xiong, W. J.; Ma, D. Y.; Liang, J. L., Robust convergence of Cohen-Grossberg neural networks with time-varying delays, Chaos Solitons Fractals, 40, 1176-1184, (2009) · Zbl 1197.34147
[11] Wang, B. X.; Jian, J. G.; Jiang, M. H., Stability in Lagrange sense for Cohen-Grossberg neural networks with time-varying delays and finite distributed delays, Nonlinear Anal. Hybrid Syst., 4, 65-78, (2010) · Zbl 1189.34149
[12] Wang, X. H.; Jiang, M. H.; Fang, S. L., Stability analysis in Lagrange sense for a non-autonomous Cohen-Grossberg neural network with mixed delays, Nonlinear Anal. TMA, 70, 4294-4306, (2009) · Zbl 1162.34338
[13] Zhu, Q. X.; Cao, J. D., Exponential stability analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with mixed delays, Neurocomputing, 74, 3084-3091, (2011)
[14] Zhu, Q. X.; Cao, J. D., Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Netw., 21, 8, 1314-1325, (2010)
[15] Zhu, Q. X.; Cao, J. D., pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dyn., 67, 829-845, (2012) · Zbl 1242.93126
[16] Zhu, Q. X.; Cao, J. D., Adaptive synchronization of chaotic Cohen-crossberg neural networks with mixed time delays, Nonlinear Dyn., 61, 517-534, (2010) · Zbl 1204.93064
[17] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15, 116-132, (1985) · Zbl 0576.93021
[18] Yamamoto, H.; Furuhashi, T., A new sufficient condition for stable fuzzy control system and its design method, IEEE Trans. Fuzzy Syst., 9, 4, 554-569, (2001)
[19] Hou, Y. Y.; Liao, T. L.; Yan, J. J., Stability analysis of Takagi-sugeno fuzzy cellular neural networks with time-varying delays, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 37, 3, 720-726, (2007)
[20] Yang, T.; Yang, L.; Wu, C. W.; Chua, L. O., Fuzzy cellular neural networks: theory, (Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, (1996), IEEE Piscataway), 181-186
[21] Li, H.; Chen, B.; Zhou, Q.; Qian, W., Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 39, 94-102, (2009)
[22] Huang, H.; Ho, D. W.C.; Lam, J., Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 52, 5, 251-255, (2005)
[23] Sathy, R.; Balasubramaniam, P., Stability analysis of fuzzy Markovian jumping Cohen-Grossberg BAM neural networks with mixed time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 16, 2054-2064, (2011) · Zbl 1221.34201
[24] Ali, M. S.; Balasubramaniam, P., Robust stability for uncertain stochastic fuzzy BAM neural networks with time varying delay, Phys. Lett. A, 372, 5159-5166, (2008) · Zbl 1221.34190
[25] Ali, M. S.; Balasubramaniam, P., Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays, Chaos Solitons Fractals, 42, 2191-2199, (2009) · Zbl 1198.93192
[26] Ali, M. S.; Balasubramaniam, P., Robust stability of uncertain fuzzy Cohen-Grossberg BAM neural networks with time-varying delays, Expert Syst. Appl., 36, 10583-10588, (2009)
[27] Balasubramaniam, P.; Ali, M. S., Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets Syst., 161, 608-618, (2010) · Zbl 1185.68511
[28] Balasubramaniam, P.; Ali, M. S., Stability analysis of Takagi-sugeno fuzzy Cohen-Grossberg BAM neural networks with discrete and distributed time-varying delays, Math. Comput. Model., 53, 151-160, (2011) · Zbl 1211.37101
[29] Lou, X.; Cui, B., Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays, Fuzzy Sets Syst., 158, 2746-2756, (2007) · Zbl 1133.93366
[30] Seiler, G.; Nossek, J. A., Winner-take-all cellular neural networks, IEEE Trans. Circuits Syst. II, 40, 3, 184-190, (1993) · Zbl 0800.92049
[31] Wersing, H.; Beyn, W.; Ritter, H., Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions, Neural Comput., 13, 1811-1825, (2001) · Zbl 1009.92003
[32] Wang, L. L.; Chen, T. P., Complete stability of cellular neural networks with unbounded time-varying delays, Neural Netw., 36, 11-17, (2012) · Zbl 1258.34164
[33] Foss, J.; Longtin, A.; Mensour, B.; Milton, J., Multistability and delayed recurrent loops, Phys. Rev. Lett., 76, 4, 708-711, (1996)
[34] Lu, W. L.; Wang, L. L.; Chen, T. P., On attracting basins of multiple equilibria of a class of cellular neural networks, IEEE Trans. Neural Netw., 22, 3, 381-394, (2011)
[35] Liao, X. X.; Luo, Q.; Zeng, Z. G.; Guo, Y. X., Global exponential stability in Lagrange sense for recurrent neural networks with time delays, Nonlinear Anal., Real World Appl., 9, 1535-1557, (2008) · Zbl 1154.34384
[36] Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A., Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time varying delays, Phys. Scr., 88, 035008, (2013) · Zbl 1279.92013
[37] Sakthivel, R.; Raja, R.; Anthoni, S. M., Exponential stability for delayed stochastic bidirectional associative memory neural networks with Markovian jumping and impulses, J. Optim. Theory Appl., 150, 166-187, (2011) · Zbl 1226.93134
[38] Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S., Exponential stability result for discrete-time stochastic fuzzy uncertain neural networks, Phys. Lett. A, 376, 901-912, (2012) · Zbl 1255.92005
[39] Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S., New stability and stabilization criteria for fuzzy neural networks with various activation functions, Phys. Scr., 84, 015007, (2011) · Zbl 1219.82131
[40] Tong, D. B.; Zhu, Q. Y.; Zhou, W. N.; Xu, Y. H.; Fang, J. A., Adaptive synchronization for stochastic T-S fuzzy neural networks with time-delay and Markovian jumping parameters, Neurocomputing, 117, 91-97, (2013)
[41] Li, C. Z.; Li, Y. K.; Ye, Y., Exponential stability of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects, Commun. Nonlinear Sci. Numer. Simul., 15, 3599-3606, (2010) · Zbl 1222.34090
[42] Zhu, Q. X.; Li, X. D., Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets Syst., 203, 74-94, (2012) · Zbl 1253.93135
[43] Zhou, C. H.; Zhang, H. Y.; Zhang, H. B.; Dang, C. Y., Global exponential stability of impulsive fuzzy Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms, Neurocomputing, 91, 67-76, (2012)
[44] Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P., New passivity criteria for fuzzy BAM neural networks with Markovian jumping parameters and time-varying delays, Rep. Math. Phys., 71, 69-91, (2013) · Zbl 1270.93101
[45] Sakthivel, R.; Arunkumar, A.; Mathiyalagan, K.; Marshal Anthoni, S., Robust passivity analysis of fuzzy Cohen-Grossberg BAM neural networks with time-varying delays, Appl. Math. Comput., 218, 3799-3809, (2011) · Zbl 1257.34059
[46] Zhang, B. Y.; Zheng, W. X.; Xu, S. Y., Passivity analysis and passive control of fuzzy systems with time-varying delays, Fuzzy Sets Syst., 174, 83-98, (2011) · Zbl 1221.93063
[47] Song, Q. K.; Zhao, Z. J.; Yang, J. X., Passivity and passification for stochastic Takagi-sugeno fuzzy systems with mixed time-varying delays, Neurocomputing, 122, 330-337, (2013)
[48] Wang, X. H.; Xu, D. Y., Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms, Chaos Solitons Fractals, 42, 2713-2721, (2009) · Zbl 1198.34094
[49] Bao, G.; Wen, S. P.; Zeng, Z. G., Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Netw., 33, 32-41, (2012) · Zbl 1267.34137
[50] Huang, T. W., Robust stability of delayed fuzzy Cohen-Grossberg neural networks, Comput. Math. Appl., 61, 2247-2250, (2011) · Zbl 1219.93094
[51] He, D. H.; Xu, D. Y., Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays, Phys. Lett. A, 372, 7057-7062, (2008) · Zbl 1227.92001
[52] Huang, Y. M.; Zhu, W.; Xu, D. Y., Invariant and attracting set of fuzzy cellular neural networks with variable delays, Appl. Math. Lett., 22, 478-483, (2009) · Zbl 1225.34085
[53] Xu, S. Y.; Lam, J., A new approach to exponential stability analysis of neural networks with time-varying delays, Neural Netw., 19, 1, 76-83, (2006) · Zbl 1093.68093
[54] Wang, G. J.; Cao, J. D.; Wan, L., Global dissipativity of stochastic neural networks with time delay, J. Franklin Inst., 346, 794-807, (2009) · Zbl 1298.93309
[55] Jian, J. G.; Kong, D. M.; Luo, H. G.; Liao, X. X., Exponential stability of differential systems with separated variables and time delays, J. Cent. South Univ. Technol., 36, 2, 282-287, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.