×

Sobolev inequalities for Musielak-Orlicz spaces. (English) Zbl 1392.46037

Summary: Our aim in this paper is to deal with Sobolev’s embeddings for Musielak-Orlicz-Sobolev functions in \(W^{1,\Phi }_0(\Omega )\) for \(\Omega \subset \mathbb {R}^N\), as extensions of P. Harjulehto and P. Hästö [Publ. Mat., Barc. 52, No. 2, 347–363 (2008; Zbl 1163.46022)], P. A. Hästö [Math. Res. Lett. 16, No. 2–3, 263–278 (2009; Zbl 1184.46033)] and P. Hästö et al. [Glasg. Math. J. 52, No. 2, 227–240 (2010; Zbl 1206.46035)]. Here \(\Phi \) is a function such that \(\phi (x,t)=t^{-1} \Phi (x,t)\) is uniformly almost increasing positive function of \(t > 0\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Almeida, A., Harjulehto, P., Hästö, P., Lukkari, T.: Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Ann. Mat. Pura Appl. (4) 194(2), 405-424 (2015) · Zbl 1310.47069 · doi:10.1007/s10231-013-0382-2
[2] Almeida, A., Samko, S.: Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend. 26(2), 179-193 (2007) · Zbl 1131.46022 · doi:10.4171/ZAA/1317
[3] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operators on variable \[L^p\] Lp spaces. Rev. Mat. Iberoam. 23(3), 743-770 (2007) · Zbl 1213.42063 · doi:10.4171/RMI/511
[4] Çekiç, B., Mashiyev, R., Alisoy, G.T.: On the Sobolev-type inequality for Lebesgue spaces with a variable exponent. Int. Math. Forum 1(25-28), 1313-1323 (2006) · Zbl 1125.46023 · doi:10.12988/imf.2006.06108
[5] Cruz-Uribe, D., Fiorenza, A.: \[L\log L\] LlogL results for the maximal operator in variable \[L^p\] Lp spaces. Trans. Am. Math. Soc. 361, 2631-2647 (2009) · Zbl 1163.42006 · doi:10.1090/S0002-9947-08-04608-4
[6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhauser, Heidelberg (2013) · Zbl 1268.46002
[7] Diening, L.: Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces \[L^{p(\cdot )}\] Lp(·) and \[W^{k, p(\cdot )}\] Wk,p(·). Math. Nachr. 263(1), 31-43 (2004) · Zbl 1065.46024 · doi:10.1002/mana.200310157
[8] Diening, L., Harjulehto, P., Hästö, P., R \[\stackrel{\circ }{\rm u}\] u∘žička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011) · Zbl 1222.46002
[9] Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. Stud. Math. 143(3), 267-293 (2000) · Zbl 0974.46040
[10] Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. II. Math. Nachr. 246(247), 53-67 (2002) · Zbl 1030.46033 · doi:10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
[11] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31, 495-522 (2006) · Zbl 1100.31002
[12] Harjulehto, P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125-136 (2007) · Zbl 1174.46322
[13] Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Complut. 17, 129-146 (2004) · Zbl 1072.46021 · doi:10.5209/rev_REMA.2004.v17.n1.16790
[14] Harjulehto, P., Hästö, P.: Sobolev inequalities for variable exponents attaining the values \[11\] and \[n\] n. Publ. Mat. 52, 347-363 (2008) · Zbl 1163.46022 · doi:10.5565/PUBLMAT_52208_05
[15] Hästö, P.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263-278 (2009) · Zbl 1184.46033 · doi:10.4310/MRL.2009.v16.n2.a5
[16] Hästö, P., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Orlicz spaces of two variable exponents. Glasg. Math. J. 52, 227-240 (2010) · Zbl 1206.46035 · doi:10.1017/S0017089509990292
[17] Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz type potentials in the Lebesgue spaces with variable exponent. Z. Anal. Anwend. 22(4), 899-910 (2003) · Zbl 1040.42013 · doi:10.4171/ZAA/1178
[18] Kurata, K., Shioji, N.: Compact embedding from \[W^{1,2}_0(\Omega )\] W01,2(Ω) to \[L^{q(x)}(\Omega )\] Lq(x)(Ω) and its application to nonlinear elliptic boundary value problem with variable critical exponent. J. Math. Anal. Appl. 339(2), 1386-1394 (2008) · Zbl 1151.46020 · doi:10.1016/j.jmaa.2007.07.083
[19] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137, 76-96 (2013) · Zbl 1267.46045 · doi:10.1016/j.bulsci.2012.03.008
[20] Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakkōtosho, Tokyo (1996) · Zbl 0849.31001
[21] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \[L^{p(\cdot )}(\log L)^{q(\cdot )}\] Lp(·)(logL)q(·). J. Math. Anal. Appl. 345, 70-85 (2008) · Zbl 1153.31002 · doi:10.1016/j.jmaa.2008.03.067
[22] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math, vol. 1034. Springer, Berlin (1983) · Zbl 0557.46020
[23] Samko, S., Shargorodsky, E., Vakulov, B.: Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. II. J. Math. Anal. Appl. 325(1), 745-751 (2007) · Zbl 1107.47016 · doi:10.1016/j.jmaa.2006.01.069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.