×

A new finding on pattern self-organization along the route to chaos. (English) Zbl 1392.39006

Summary: This research investigates pattern self-organization along the route to chaos in a space- and time-discrete predator-prey system, where the prey shows convection movement in space. Through analysis on Turing instability of the system, pattern self-organization conditions are determined. Based on the conditions, simulations are performed under two initial conditions, demonstrating two pattern transitions along the route to chaos. In the first pattern transition, the patterns start from regular stripes, experiencing twisted stripes, then return to regular stripes again. The second pattern transition is much more complex and shows three stages. Especially, an alternation between ordered patterns and disordered chaos is found, contributing greatly to the spatiotemporal complexity of the system. When the system stays at the homogeneous chaotic states, Turing instability driven by convection and diffusion can still force the self-organization of regular striped patterns. The finding in this research provides a new comprehending for pattern self-organization and transition in spatially extended predator-prey systems.

MSC:

39A14 Partial difference equations
39A12 Discrete version of topics in analysis
37G10 Bifurcations of singular points in dynamical systems
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Kondo, S.; Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329, 1616-1620, (2010) · Zbl 1226.35077
[2] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, (1976) · Zbl 1369.37088
[3] Hu, D.; Cao, H., Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun Nonlinear Sci Numer Simul, 22, 702-715, (2015) · Zbl 1331.92125
[4] Huang, T.; Zhang, H., Bifurcation, chaos and pattern formation in a space- and time-discrete predator-prey system, Chaos Solitons Fract, 91, 92-107, (2016) · Zbl 1372.92082
[5] Zhang, H.; Huang, T.; Dai, L., Nonlinear dynamic analysis and characteristics diagnosis of seasonally perturbed predator-prey systems, Commun Nonlinear Sci Numer Simul, 22, 407-419, (2015)
[6] Wang, W.; Lin, Y.; Zhang, L.; Rao, F.; Tan, Y., Complex patterns in a predator-prey model with self and cross-diffusion, Commun Nonlinear Sci Numer Simul, 16, 2006-2015, (2011) · Zbl 1221.35423
[7] Mistro, D. C.; Rodrigues, L. A.D.; Petrovskii, S., Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong allee effect, Ecol Complex, 9, 16-32, (2012)
[8] Huang, T.; Zhang, H.; Yang, H.; Wang, N.; Zhang, F., Complex patterns in a space- and time-discrete predator-prey model with beddington-deangelis functional response, Commun Nonlinear Sci Numer Simul, 43, 182-199, (2017) · Zbl 1466.92147
[9] Chang, L.; Sun, G. Q.; Wang, Z.; Jin, Z., Rich dynamics in a spatial predator-prey model with delay, Appl Math Comput, 256, 540-550, (2015) · Zbl 1338.92096
[10] Huang, T.; Zhang, H.; Yang, H., Spatiotemporal complexity of a discrete space-time predator-prey system with self- and cross-diffusion, Appl Math Modell, 47, 637-655, (2017) · Zbl 1446.92013
[11] Punithan, D.; Kim, D. K.; McKay, R. I.B., Spatio-temporal dynamics and quantification of daisyworld in two-dimensional coupled map lattices, Ecol Complex, 12, 43-57, (2012)
[12] Rodrigues, L. A.D.; Mistro, D. C.; Petrovskii, S., Pattern formation in a space- and time-discrete predator-prey system with a strong allee effect, Theor Ecol, 5, 341-362, (2012)
[13] Segel, L. A.; Jackson, J. L., Dissipative structure: an explanation and an ecological example, J Theor Biol, 37, 545-559, (1972)
[14] Levin, S. A.; Segel, L. A., Hypothesis for origin of planktonic patchiness, Nature, 259, 659, (1976)
[15] Perc, M.; Szolnoki, A.; Szabó, G., Cyclical interactions with alliance-specific heterogeneous invasion rates, Phys Rev E, 75, (2007)
[16] Perc, M.; Szolnoki, A., Noise-guided evolution within cyclical interactions, New J Phys, 9, 267, (2007)
[17] Szolnoki, A.; Mobilia, M.; Jiang, L. L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J R Soc Interface, 11, (2014)
[18] Cai, Y.; Zhao, C.; Wang, W., Spatiotemporal complexity of a Leslie-gower predator-prey model with the weak alee effect, J Appl Math, 2013, (2013) · Zbl 1397.92563
[19] Abid, W.; Yafia, R.; Aziz-Alaoui, M. A.; Bouhafa, H.; Abichou, A., Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain, Appl Math Comput, 260, 292-313, (2015) · Zbl 1410.92092
[20] Turing, A. M., The chemical basis of morphogenesis, Philos Trans R Soc London, Ser B, 237, 37-72, (1952) · Zbl 1403.92034
[21] Guin, L. N., Existence of spatial patterns in a predator-prey model with self-and cross-diffusion, Appl Math Comput, 226, 320-335, (2014) · Zbl 1354.92062
[22] Upadhyay, R. K.; Kumari, N.; Rai, V., Wave of chaos and pattern formation in spatial predator-prey systems with Holling type IV predator response, Math Modell Nat Phenom, 3, 71-95, (2008) · Zbl 1337.35080
[23] Sun, G. Q.; Zhang, J.; Song, L. P.; Jin, Z.; Li, B. L., Pattern formation of a spatial predator-prey system, Appl Math Comput, 218, 11151-11162, (2012) · Zbl 1278.92041
[24] Petrovskii, S.; Li, B. L., An exactly solvable model of population dynamics with density-dependent migrations and the allee effect, Math Biosci, 186, 79-91, (2003) · Zbl 1027.92026
[25] Bai, L.; Zhang, G., Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Appl Math Comput, 210, 321-333, (2009) · Zbl 1162.39300
[26] Han, Y.-T.; Han, B.; Zhang, L.; Xu, L.; Li, M.-F.; Zhang, G., Turing instability and wave patterns for a symmetric discrete competitive Lotka-Volterra system, WSEAS Trans Math, 10, 181-189, (2011)
[27] Antal, T.; Droz, M., Phase transitions and oscillations in a lattice prey-predator model, Phys Rev E, 63, (2001)
[28] Schaffer, W. M., Order and chaos in ecological systems, Ecology, 66, 93-106, (1985)
[29] Rodrigues, L. A.D.; Mistro, D. C.; Petrovskii, S., Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system, Bull Math Biol, 73, 8, 1812-1840, (2011) · Zbl 1220.92053
[30] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J Theor Biol, 245, 2, 220-229, (2007) · Zbl 1451.92248
[31] van de Koppel, J.; Rietkerk, M.; Dankers, N.; Herman, P. M.J., Scale-dependent feedback and regular spatial patterns in Young mussel beds, Am Nat, 165, 3, E66-E77, (2005)
[32] Killingback, T.; Loftus, G.; Sundaram, B., Competitively coupled maps and spatial pattern formation, Phys Rev E, 87, 2, (2013)
[33] Doebeli, M.; Killingback, T., Metapopulation dynamics with quasi-local competition, Theor Popul Biol, 64, 4, 397-416, (2003) · Zbl 1105.92038
[34] Schreiber, S. J.; Killingback, T. P., Spatial heterogeneity promotes coexistence of rock-paper-scissors metacommunities, Theor Popul Biol, 86, 6, 1-11, (2013) · Zbl 1296.92219
[35] Postlethwaite, C. M.; Rucklidge, A. M., Spirals and heteroclinic cycles in a spatially extended rock-paper-scissors model of cyclic dominance, Lett J Exploring Front Phys, 117, 48006, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.