×

Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions. (English) Zbl 1392.35110

Summary: We discuss existence and nonexistence results of positive radial solutions to the problem \[ \begin{cases} \begin{gathered} - {\Delta} u = \lambda K(| x |) f(u)\;\text{in } | x | > r_0, \\ \frac{\partial u}{\partial n} + \widetilde{c}(u) u = 0 \text{ on } | x | = r_0,\quad u(x) \rightarrow 0 \text{ as } | x | \rightarrow \infty, \end{gathered}\end{cases} \] where \(\Omega =\big\{x \in\mathbb R^N : | x | > r_0 > 0 \big\}\), \(N > 2\), \(f:(0, \infty) \rightarrow \mathbb{R}\) is continuous, superlinear at \(\infty\), and is allowed to be singular at 0 with no sign conditions near 0.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] Ali, I.; Castro, A.; Shivaji, R., Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117, 775-782 (1993) · Zbl 0770.34019
[2] Allegretto, W.; Nistri, P.; Zecca, P., Positive solutions of elliptic nonpositone problems, Differential Integral Equations, 5, 95-101 (1992) · Zbl 0758.35032
[3] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044
[4] Ambrosetti, A.; Arcoya, D.; Buffoni, B., Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations, 7, 655-663 (1994) · Zbl 0808.35030
[5] Anuradha, V.; Hai, D. D.; Shivaji, R., Existence results for superlinear semipositone BVP’s, Proc. Amer. Math. Soc., 124, 757-763 (1996) · Zbl 0857.34032
[6] Berestycki, H.; Caffarelly, L.; Nirenberg, L., Inequalities for second-order elliptic equations with applications to unbounded domains, Duke Math. J., 467-494 (1996) · Zbl 0860.35004
[7] Brown, K. J.; Castro, A.; Shivaji, R., Nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems, Differential Integral Equations, 2, 541-545 (1989) · Zbl 0736.35039
[8] Castro, A.; Gadam, S.; Shivaji, R., Branches of radial solutions for semipositone problems, J. Differential Equations, 120, 30-45 (1995) · Zbl 0838.34037
[9] Castro, A.; Shivaji, R., Non-negative solutions for a class of radially symmetric non-positone problems, Proc. Amer. Math. Soc., 106, 735-740 (1989) · Zbl 0686.35044
[10] Castro, A.; Shivaji, R., Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations, 14, 1091-1100 (1989) · Zbl 0688.35025
[11] Dhanya, R.; Morris, Q.; Shivaji, R., Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 434, 1533-1548 (2016) · Zbl 1328.35024
[12] Hai, D. D., On singular Sturm-Liouville boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 140, 49-63 (2010) · Zbl 1194.34038
[13] Hai, D. D., Positive radial solutions for singular quasilinear elliptic equations in a ball, Publ. Res. Inst. Math. Sci., 50, 2, 341-362 (2014) · Zbl 1303.35038
[14] Hai, D. D.; Shivaji, R., On radial solutions for singular combined superlinear elliptic systems on annular domains, J. Math. Anal. Appl., 446, 1, 335-344 (2017) · Zbl 1391.34055
[15] Jacobsen, J.; Schmitt, K., Radial solutions of quasilinear elliptic differential equations, (Handbook of Differential Equations (2004), Elsevier/North-Holand: Elsevier/North-Holand Amsterdam), 359-435 · Zbl 1091.34011
[16] Ko, E.; Ramaswasmy, M.; Shivaji, R., Uniqueness of positive solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 423, 399-409 (2015) · Zbl 1308.35107
[17] Lions, P. L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24, 441-467 (1982) · Zbl 0511.35033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.