×

Dark solitons behaviors for a (2+1)-dimensional coupled nonlinear Schrödinger system in an optical fiber. (English) Zbl 1392.35071

Summary: In this paper, we investigate a (2+1)-dimensional coupled nonlinear Schrödinger system, which describes the transverse effects in an optical fiber, time-independent copropagation and field of optical soliton. Bilinear forms, dark one- and two-soliton solutions are derived by virtue of the Hirota method. Propagation and interaction properties of the dark solitons are discussed: (i) Amplitudes and velocities of the dark solitons are affected by the values of the wave numbers \(\mu\), \(\lambda\) and \(\theta\). (ii) Head-on and overtaking interactions between the two parallel dark solitons are discussed, where the amplitudes of the dark solitons remain unchanged after each interaction, implying that the interactions are elastic. (iii) Stationary dark solitons are depicted in this paper. (iv) Through the asymptotic analysis, elastic interaction between the two solitons is discussed analytically.

MSC:

35C08 Soliton solutions
35Q55 NLS equations (nonlinear Schrödinger equations)
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI

References:

[1] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J. M., Nat Phys, 6, 790, (2010)
[2] Beauno, S.; Latha, M. M., Int J Adv Res Sci Tech, 1, 93, (2015)
[3] Wang, L.; Zhang, J. H.; Liu, C.; Li, M.; Qi, F. H.; Zhang, J. H.; Wang, L.; Liu, C.; Wang, L.; Zhu, Y. J.; Qi, F. H.; Li, M.; Guo, R., Phys Rev E, Proc. R. Soc. A, Chaos, 25, 063111, (2015)
[4] Liu, W. J.; Huang, L. G.; Huang, P.; Li, Y. Q.; Lei, M., Appl Math Lett, 61, 80, (2016) · Zbl 1358.35174
[5] Abdullaev, F.; Darmanyan, S.; Khabibullaev, P., Optical solitons, (1993), Springer, Berlin
[6] Zhao, X. H.; Tian, B.; Chai, J.; Wu, X. Y.; Guo, Y. J.; Zhao, X. H.; Tian, B.; Li, H. M.; Guo, Y. J.; Zhao, X. H.; Tian, B.; Chai, J.; Wu, X. Y.; Guo, Y. J.; Zhao, X. H.; Tian, B.; Liu, D. Y.; Wu, X. Y.; Chai, J.; Guo, Y. J., Eur Phys J Plus, Appl Math Lett, Mod Phys Lett B, Superlattices Microstruct, 100, 587, (2016)
[7] Xu, T.; Li, H. J.; Zhang, H. J.; Li, M.; Lan, S., Appl Math Lett, 63, 88, (2017) · Zbl 1351.35195
[8] Islam, M. N., Ultrafast fiber switching devices and systems, (1992), Cambridge Univ. Press Cambridge
[9] Lü, X.; Ma, W. X.; Yu, J.; Khalique, C. M.; Cai, L. Y.; Wang, X.; Wang, L.; Li, M.; Liu, Y.; Shi, Y. Y.; Wang, L.; Zhu, Y. J.; Wang, Z. Z.; Qi, F. H.; Guo, R., Commun Nonlinear Sci Numer Simul, Nonlinear Dyn, Commun. Nonlinear Sci. Numer. Simulat, 33, 218, (2016)
[10] Skarka, V.; Berezhiani, V. I.; Miklaszewski, R., Phys Rev E, 56, 1080, (1997)
[11] Hasegawa, A.; Tappert, F., Appl Phys Lett, 23, 142, (1973)
[12] Hasegawa, A.; Tappert, F., Appl Phys Lett, 23, 171, (1973)
[13] Mollenauer, L. F.; Stolen, R. H.; Gordon, J. P., Phys Rev Lett, 45, 1095, (1980)
[14] Wang, L.; Li, X.; Qi, F. H.; Zhang, L. L.; Zhao, X. H.; Tian, B.; Guo, Y. J.; Li, H. M., Ann Phys, Mod Phys Lett B, 32, 1750268, (2018)
[15] Matveev, V. B.; Salle, M. A., Darboux transformations and solitons, (1991), Springer Berlin · Zbl 0744.35045
[16] Xu, T.; Li, M.; Li, L., EPL, 109, 30006, (2015)
[17] Ablowitz, M. J.; Segur, H., Soliton and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0472.35002
[18] Mousa, M. M.; Ragab, S. F., Z Nturforsch A, 63, 140, (2008)
[19] Hirota, R., J Math Phys, 14, 805, (1973) · Zbl 0257.35052
[20] Hirota, R.; Ohta, Y., J Phys Soc, 60, 798, (1991) · Zbl 1160.37395
[21] Hirota, R., The direct method in soliton theory, (1980), Springer Berlin
[22] Caputo, J. G.; Maimistov, A. I., Phys Lett A, 296, 34, (2002) · Zbl 0991.78010
[23] Hasegawa, A.; Kodama, Y., Solitons in optical communications, (1995), Oxford University Press Oxford · Zbl 0840.35092
[24] Zhang, H. Q.; Meng, X. H.; Xu, T.; Li, L. L.; Tian, B., Phys Scr, 75, 537, (2007) · Zbl 1110.35341
[25] Radhakrishnan, R.; Kundu, A.; Lakshmanan, M., Phys Rev E, 60, 3, (1999)
[26] Mansfield, E. L.; Reid, G. J., Comput Phys Comm, 115, 460, (1998) · Zbl 0996.35069
[27] Kivshar, Y. S.; Agrawal, G. P., Optical solitons: from fibers to photonic crystals, (2003), Academic Press San Diego
[28] Abraham, N. B.; Firth, W. J., J Opt Soc Am B, 7, 951, (1990)
[29] Mollenauer, L. F.; Evangelides, S. G.; Gordon, J. P., J Lightwave Technol, 9, 362, (1991)
[30] Chakravarty, S.; Ablowitz, M. J.; Sauer, J. R.; Jenkins, R. B., Opt Lett, 20, 136, (1995)
[31] Kaup, D. J.; Malomed, B. A., Phys Rev A, 48, 599, (1993)
[32] Radhakrishnan, R.; Lakshmanan, M., J Phys A, 28, 2683, (1995) · Zbl 0841.35110
[33] Kanna, T.; Lakshmanan, M., Phys Rev Lett, 86, 5043, (2001)
[34] Kanna, T.; Lakshmanan, M.; Dinda, P. T.; Akhmediev, N., Phys Rev E, 73, 026604, (2006)
[35] Hioe, F. T., Phys Rev E, 58, 6700, (1998)
[36] Petnikova, V. M.; Shuvalov, V. V.; Vysloukh, V. A., Phys Rev E, 60, 1009, (1999)
[37] Chow, K. W.; Lai, D. W.C., Phys Rev E, 65, 026613, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.