×

Malliavin calculus for non-Gaussian differentiable measures and surface measures in Hilbert spaces. (English) Zbl 1392.28012

The authors defined Sobolev spaces with respect to a non degenerate Borel probability measure \(\nu\). They also proved properties of the Sobolev spaces that are useful to construct the surface measures.
In Theorem 3.4, which is one of the main results of this paper, the authors construct surface measures in a Hilbert space under Hypothesis 1.1 and 1.3. Their approach comes from the general geometric measure theory and relies on the theory of the functions with bounded variation.
Examples concerned with Gaussian measure, weighted Gaussian measures, an infinite product of non-Gaussian measure, and some invariant measures of stochastic PDEs are given in Sections 6–8. Also integration by parts formulae on sublevel sets of good functions that involve surface integrals are proved.

MSC:

28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)

References:

[1] Airault, H.; Malliavin, P., Int\'egration g\'eom\'etrique sur l’espace de Wiener, Bull. Sci. Math. (2), 112, 1, 3-52 (1988) · Zbl 0656.60046
[2] Albeverio, Sergio; R\"ockner, Michael, Classical Dirichlet forms on topological vector spaces-closability and a Cameron-Martin formula, J. Funct. Anal., 88, 2, 395-436 (1990) · Zbl 0737.46036 · doi:10.1016/0022-1236(90)90113-Y
[3] Ambrosio, Luigi; Miranda, Michele, Jr.; Maniglia, Stefania; Pallara, Diego, BV functions in abstract Wiener spaces, J. Funct. Anal., 258, 3, 785-813 (2010) · Zbl 1194.46066 · doi:10.1016/j.jfa.2009.09.008
[4] Ambrosio, Luigi; Da Prato, Giuseppe; Goldys, Ben; Pallara, Diego, Bounded variation with respect to a log-concave measure, Comm. Partial Differential Equations, 37, 12, 2272-2290 (2012) · Zbl 1257.26009 · doi:10.1080/03605302.2012.690014
[5] Bogachev, Vladimir I., Gaussian measures, Mathematical Surveys and Monographs 62, xii+433 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0913.60035 · doi:10.1090/surv/062
[6] Bogachev, V. I., Measure theory. Vol. I, II, Vol. I: xviii+500 pp., Vol. II: xiv+575 pp. (2007), Springer-Verlag, Berlin · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[7] Bogachev, Vladimir I., Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs 164, xvi+488 pp. (2010), American Mathematical Society, Providence, RI · Zbl 1247.28001
[8] Bogachev, Vladimir I.; Pilipenko, Andrey Yu.; Shaposhnikov, Alexander V., Sobolev functions on infinite-dimensional domains, J. Math. Anal. Appl., 419, 2, 1023-1044 (2014) · Zbl 1310.46035 · doi:10.1016/j.jmaa.2014.05.020
[9] Bogachev, Vladimir I., Surface measures in infinite-dimensional spaces. Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory, 52-97 (2017), De Gruyter Open, Warsaw · Zbl 1485.28002
[10] Bogachev, Vladimir I.; Malofeev, Ilya I., Surface measures generated by differentiable measures, Potential Anal., 44, 4, 767-792 (2016) · Zbl 1342.28027 · doi:10.1007/s11118-015-9530-1
[11] Celada, Pietro; Lunardi, Alessandra, Traces of Sobolev functions on regular surfaces in infinite dimensions, J. Funct. Anal., 266, 4, 1948-1987 (2014) · Zbl 1308.46042 · doi:10.1016/j.jfa.2013.11.013
[12] Cerrai, Sandra, Second order PDE’s in finite and infinite dimension, {\rm A probabilistic approach}, Lecture Notes in Mathematics 1762, x+330 pp. (2001), Springer-Verlag, Berlin · Zbl 0983.60004 · doi:10.1007/b80743
[13] Chaari, S.; Cipriano, F.; Kuo, H.-H.; Ouerdiane, H., Surface measures on the dual space of the Schwartz space, Commun. Stoch. Anal., 4, 3, 467-480 (2010) · Zbl 1331.60136
[14] Da Prato, Giuseppe, Kolmogorov equations for stochastic PDEs, Advanced Courses in Mathematics. CRM Barcelona, x+182 pp. (2004), Birkh\"auser Verlag, Basel · Zbl 1066.60061 · doi:10.1007/978-3-0348-7909-5
[15] Da Prato, Giuseppe, An introduction to infinite-dimensional analysis, revised and extended from the 2001 original by Da Prato, Universitext, x+209 pp. (2006), Springer-Verlag, Berlin · Zbl 1109.46001 · doi:10.1007/3-540-29021-4
[16] Da Prato, Giuseppe; Debussche, Arnaud, \(m\)-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise, Potential Anal., 26, 1, 31-55 (2007) · Zbl 1119.35128 · doi:10.1007/s11118-006-9021-5
[17] G. Da Prato, A. Debussche, Existence of the Fomin derivative of the invariant measure of a stochastic reaction-diffusion equation, preprint arXiv:1502.07490. Proceedings of the conference Mathematical Analysis of Viscous Incompressible Fluids, November 17-19, 2014. Research Institute for Mathematical Science, Kyoto University, 121-134, 2015.
[18] Da Prato, Giuseppe; Debussche, Arnaud, Estimate for \(P_tD\) for the stochastic Burgers equation, Ann. Inst. Henri Poincar\'e Probab. Stat., 52, 3, 1248-1258 (2016) · Zbl 1350.60057 · doi:10.1214/15-AIHP685
[19] Da Prato, Giuseppe; Debussche, Arnaud, An integral inequality for the invariant measure of a stochastic reaction-diffusion equation, J. Evol. Equ., 17, 1, 197-214 (2017) · Zbl 1364.60080 · doi:10.1007/s00028-016-0349-z
[20] Da Prato, Giuseppe; Lunardi, Alessandra, Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension, Ann. Probab., 42, 5, 2113-2160 (2014) · Zbl 1328.35291 · doi:10.1214/14-AOP936
[21] Da Prato, Giuseppe; Lunardi, Alessandra; Tubaro, Luciano, Surface measures in infinite dimension, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 25, 3, 309-330 (2014) · Zbl 1301.28009 · doi:10.4171/RLM/681
[22] Da Prato, G.; Zabczyk, J., Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series 229, xii+339 pp. (1996), Cambridge University Press, Cambridge · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[23] Da Prato, Giuseppe; Zabczyk, Jerzy, Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series 293, xvi+379 pp. (2002), Cambridge University Press, Cambridge · Zbl 1012.35001 · doi:10.1017/CBO9780511543210
[24] Dunford, Nelson; Schwartz, Jacob T., Linear operators. Part I, General theory, with the assistance of William G. Bade and Robert G. Bartle, reprint of the 1958 original. Wiley Classics Library, xiv+858 pp. (1988), John Wiley & Sons, Inc., New York · Zbl 0635.47001
[25] Diestel, J.; Uhl, J. J., Jr., Vector measures, {\rm with a foreword by B. J. Pettis; Mathematical Surveys, No. 15}, xiii+322 pp. (1977), American Mathematical Society, Providence, R.I. · Zbl 0369.46039
[26] S. Ferrari, Sobolev spaces with respect to weighted Gaussian measures in infinite dimension, preprint, 2016, arXiv 1510.08283.
[27] Feyel, D., Hausdorff-Gauss measures. Stochastic analysis and related topics, VII, Kusadasi, 1998, Progr. Probab. 48, 59-76 (2001), Birkh\"auser Boston, Boston, MA · Zbl 0977.60064
[28] Feyel, D.; de La Pradelle, A., Hausdorff measures on the Wiener space, Potential Anal., 1, 2, 177-189 (1992) · Zbl 1081.28500 · doi:10.1007/BF01789239
[29] Fukushima, Masatoshi, \(BV\) functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174, 1, 227-249 (2000) · Zbl 0978.60088 · doi:10.1006/jfan.2000.3576
[30] Fukushima, Masatoshi; Hino, Masanori, On the space of BV functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal., 183, 1, 245-268 (2001) · Zbl 0993.60049 · doi:10.1006/jfan.2000.3738
[31] Hino, Masanori, Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space, J. Funct. Anal., 258, 5, 1656-1681 (2010) · Zbl 1196.46029 · doi:10.1016/j.jfa.2009.06.033
[32] Khasminskii, Rafail, Stochastic stability of differential equations, {\rm with contributions by G. N. Milstein and M. B. Nevelson}, Stochastic Modelling and Applied Probability 66, xviii+339 pp. (2012), Springer, Heidelberg · Zbl 1241.60002 · doi:10.1007/978-3-642-23280-0
[33] Lasry, J.-M.; Lions, P.-L., A remark on regularization in Hilbert spaces, Israel J. Math., 55, 3, 257-266 (1986) · Zbl 0631.49018 · doi:10.1007/BF02765025
[34] Malliavin, Paul, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 313, xii+343 pp. (1997), Springer-Verlag, Berlin · Zbl 0878.60001 · doi:10.1007/978-3-642-15074-6
[35] Nualart, David, The Malliavin calculus and related topics, Probability and its Applications (New York), xii+266 pp. (1995), Springer-Verlag, New York · Zbl 0837.60050
[36] R\"ockner, Michael; Zhu, Rongchan; Zhu, Xiangchan, BV functions in a Gelfand triple for differentiable measure and its applications, Forum Math., 27, 3, 1657-1687 (2015) · Zbl 1348.60079 · doi:10.1515/forum-2012-0137
[37] Sanz-Sol\'e, Marta, Malliavin calculus, {\rm with applications to stochastic partial differential equations}, Fundamental Sciences, viii+162 pp. (2005), EPFL Press, Lausanne; distributed by CRC Press, Boca Raton, FL · Zbl 1098.60050
[38] Skorohod, A. V., Integration in Hilbert space, xii+177 pp. (1974), translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79, Springer-Verlag, New York-Heidelberg · Zbl 0307.28010
[39] P. Soardi, Serie di Fourier in pi\`“u variabili (Italian), Quaderni dell”Unione Matematica Italiana 26, Pitagora Editrice, 1984. · Zbl 0603.42001
[40] Uglanov, A. V., Surface integrals in a Banach space, Mat. Sb. (N.S.), 110(152), 2, 189-217, 319 (1979) · Zbl 0435.46030
[41] Uglanov, A. V., Integration on infinite-dimensional surfaces and its applications, Mathematics and its Applications 496, x+262 pp. (2000), Kluwer Academic Publishers, Dordrecht · Zbl 0951.46044 · doi:10.1007/978-94-015-9622-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.