×

Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients. (English) Zbl 1391.93171

Summary: We study the internal stabilization of the higher order nonlinear Schrödinger equation with constant coefficients. Combining multiplier techniques, a fixed-point argument and nonlinear interpolation theory, we can obtain the well-posedness. Then, applying compactness arguments and a unique continuation property, we prove that the solution of the higher-order nonlinear Schrödinger equation with a damping term decays exponentially.

MSC:

93D15 Stabilization of systems by feedback
93C10 Nonlinear systems in control theory
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q53 KdV equations (Korteweg-de Vries equations)
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI

References:

[1] Agrawal G P, Nonlinear fiber optics, 3rd ed. (2001) (San Diego: Academic Press) · Zbl 1024.78514
[2] Bisognin E, Bisognin V and Vera Villagrán O, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differ. Equ., 6 (2007) 18 pp · Zbl 1387.35542
[3] Capistrano-Filho, R; Pazoto, A; Rosier, L, Internal controllability of the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 21, 1076-1107, (2015) · Zbl 1331.35302 · doi:10.1051/cocv/2014059
[4] Cavalcanti, MM; Domingos Cavalcanti, VN; Soriano, J; Natali, F, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Diff. Equat., 248, 2955-2971, (2010) · Zbl 1190.35206 · doi:10.1016/j.jde.2010.03.023
[5] Ceballos, V; Pavez, FR; Villagrán, V; Paulo, O, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differ. Equ., 122, 1-31, (2005) · Zbl 1092.35100
[6] Cerpa, E, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 46, 877-899, (2007) · Zbl 1147.93005 · doi:10.1137/06065369X
[7] Cerpa, E; Crépeau, E, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 457-475, (2009) · Zbl 1158.93006 · doi:10.1016/j.anihpc.2007.11.003
[8] Chu, J; Coron, JM; Shang, P, Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths, J. Differ. Equ., 259, 4045-4085, (2015) · Zbl 1320.35307 · doi:10.1016/j.jde.2015.05.010
[9] Coron, JM; Crépeau, E, Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 6, 367-398, (2004) · Zbl 1061.93054 · doi:10.4171/JEMS/13
[10] Fabio, N, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J Dyn. Control Syst., 21, 461-474, (2015) · Zbl 1318.35107 · doi:10.1007/s10883-015-9270-y
[11] Hasegawa, A; Kodama, Y, Higher order pulse propagation in a monomode dielectric guide, IEEE J. Quant. Elect., 23, 510-524, (1987) · doi:10.1109/JQE.1987.1073392
[12] Kivshar Y S and Agrawal G P, optical solitons: from fibers to photonic crystals (2003) (San Diego: Academic Press)
[13] Kodama, Y, Optical solitons in a monomode fiber, J. Phys. Stat., 39, 596-614, (1985) · doi:10.1007/BF01008354
[14] Laurent, C, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optim Calc Var., 16, 356-379, (2010) · Zbl 1217.93032 · doi:10.1051/cocv/2009001
[15] Laurent, C; Rosier, L; Zhang, B-Y, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differ. Equ., 35, 707-744, (2010) · Zbl 1213.93015 · doi:10.1080/03605300903585336
[16] Pazoto, AF, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11, 473-486, (2005) · Zbl 1148.35348 · doi:10.1051/cocv:2005015
[17] Perla Menzala, G; Vasconcellos, CF; Zuazua, E, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60, 111-129, (2002) · Zbl 1039.35107 · doi:10.1090/qam/1878262
[18] Rosier, L, Exact boundary controllability for the Korteweg-de Vries equation on a bonded domain, ESAIM Control Optim. Calc. Var., 2, 33-55, (1997) · Zbl 0873.93008 · doi:10.1051/cocv:1997102
[19] Rosier, L; Zhang, B-Y, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45, 927-956, (2006) · Zbl 1116.35108 · doi:10.1137/050631409
[20] Simon, J, Compact sets in the space \(L^{p}(0, T;B)\), Ann. Mat. Pura Appl., 4, 65-96, (1987) · Zbl 0629.46031
[21] Tartar, L, Interpolation non linéaire et régularité, J. Funct. Anal., 9, 469-489, (1972) · Zbl 0241.46035 · doi:10.1016/0022-1236(72)90022-5
[22] Tian, B; Gao, YT, Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation, Phys. Lett. A, 359, 241-248, (2006) · doi:10.1016/j.physleta.2006.06.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.