×

Novel sliding mode control for multi-input-multi-output discrete-time system with disturbance. (English) Zbl 1391.93055

Summary: This paper investigates sliding mode control for multi-input-multi-output discrete-time system with disturbances. First of all, a novel nonlinear sliding surface, named as hyperbolic hybrid switching sliding surface, is proposed. Two different types of hyperbolic functions are introduced into the proposed sliding surface. Due to the changing of values of the hyperbolic functions, sliding surface switching occurs during the control process, which ensures that both settling time and overshoot can be decreased. The sliding mode controller is obtained based on a novel nonlinear reaching law. The nonlinear reaching law contains several parameters, and by properly designing these parameters, we can decrease the bounds of the sliding variables to small values. The stability analysis of the sliding motion is carried out from singular system viewpoint. Finally, simulation examples and comparison examples are presented to illustrate that the system performance is improved obviously by proposed novel sliding mode control, and the system is robust to the disturbances.

MSC:

93B12 Variable structure systems
93C35 Multivariable systems, multidimensional control systems
93C55 Discrete-time control/observation systems
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] ShtesselY, EdwardsC, FridmanL, LevantA. Sliding Mode Control and Observation. New York, NY: Springer; 2014.
[2] EdwardsC, SpurgeonSK. Sliding Mode Control: Theory and Applications. London, UK: Taylor & Francis Ltd; 1998.
[3] WangY, XiaY, ShenH, ZhouP. SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans Autom Control. 2017;63(1):219‐224. https://doi.org/10.1109/TAC.2017.2720970 · Zbl 1390.93695 · doi:10.1109/TAC.2017.2720970
[4] WangY, ShenH, KarimiHR, DuanD. Dissipativity‐based fuzzy integral sliding mode control of continuous‐time T‐S fuzzy systems. IEEE Trans Fuzzy Syst. 2017. https://doi.org/10.1109/TFUZZ.2017.2710952 · doi:10.1109/TFUZZ.2017.2710952
[5] LiJ, ZhangQ, YanX, SpurgeonSK. Integral sliding mode control for Markovian jump T‐S fuzzy descriptor systems based on the super‐twisting algorithm. IET Control Theory Appl. 2017;11(8):1134‐1143.
[6] HaoLY, YangGH. Robust adaptive fault‐tolerant control of uncertain linear systems via sliding‐mode output feedback. Int J Robust Nonlinear Control. 2015;25(14):2461‐2480. · Zbl 1328.93084
[7] LiJ, ZhangQ. Fuzzy reduced‐order compensator‐based stabilization for interconnected descriptor systems via integral sliding modes. IEEE Trans Syst Man Cybern Syst. 2017. https://doi.org/10.1109/TSMC.2017.2707499 · doi:10.1109/TSMC.2017.2707499
[8] ZongQ, WangJ, TaoY. Adaptive high‐order dynamic sliding mode control for a flexible air‐breathing hypersonic vehicle. Int J Robust Nonlinear Control. 2013;23(15):1718‐1736. · Zbl 1274.93058
[9] DuH, YuX, ChenM, LiS. Chattering free discrete time sliding mode control. Automatica. 2016;68:87‐91. · Zbl 1334.93041
[10] YanY, GaliasZ, YuX, SunC. Euler’s discretization effect on a twisting algorithm based sliding mode control. Automatica. 2016;68:203‐208. · Zbl 1334.93046
[11] SilvaGS, VieiraRP, RechC. Discrete‐time sliding‐mode observer for capacitor voltage control in modular multilevel converters. IEEE Trans Ind Electron. 2018;65(1):876‐886. https://doi.org/10.1109/TIE.2017.2721881 · doi:10.1109/TIE.2017.2721881
[12] ZhouH, LaoL, ChenY, YangH. Discrete‐time sliding mode control with an input filter for an electro‐hydraulic actuator. IET Control Theory Appl. 2017;11(9):1333‐1340. https://doi.org/10.1049/iet-cta.2016.0951 · doi:10.1049/iet-cta.2016.0951
[13] RahmaniB. Robust output feedback sliding mode control for uncertain discrete time systems. Nonlinear Anal Hybrid Syst. 2017;24:83‐99. · Zbl 1377.93055
[14] HajareVD, KhandekarAA, PatreBM. Discrete sliding mode controller with reaching phase elimination for TITO systems. ISA Trans. 2017;66:32‐45.
[15] HanXR, FridmanE, SpurgeonSK, EdwardsC. On the design of sliding mode static output feedback controllers for systems with state delay. IEEE Trans Ind Electron. 2009;56(9):3656‐3664.
[16] LiF, WuL, ShiP, LimCC. State estimation and sliding mode control for semi‐Markovian jump systems with mismatched uncertainties. Automatica. 2015;51:385‐393. · Zbl 1309.93157
[17] TalebM, PlestanF, BououlidB. An adaptive solution for robust control based on integral high‐order sliding mode concept. Int J Nonlinear Control. 2015;25(8):1201‐1213. · Zbl 1317.93155
[18] WuL, SuX, ShiP. Sliding mode control with bounded L_2 gain performance of markovian jump singular time‐delay systems. Automatica. 2012;48(8):1929‐1933. · Zbl 1268.93037
[19] WuL, ZhengWX. Passivity‐based sliding mode control of uncertain singular time‐delay systems. Automatica. 2009;45(9):2120‐2127. · Zbl 1175.93065
[20] LiS, DuH, YuX. Discrete time terminal sliding mode control systems based on Euler’s discretization. IEEE Trans Autom Control. 2014;59(2):546‐552. · Zbl 1360.93156
[21] FengY, ZhengJ, YuX, TruongNV. Hybrid terminal sliding mode observer design method for a permanent magnet synchronous motor control system. IEEE Trans Ind Electron. 2009;56(9):3424‐3431.
[22] TangWQ, CaiYL. High‐order sliding mode control design based on adaptive terminal sliding mode. Int J Robust Nonlinear Control. 2013;23(2):149‐166. · Zbl 1261.93029
[23] YangX, LuoH, KruegerM, DingSX, PengK. Online monitoring system design for roll eccentricity in rolling mills. IEEE Trans Ind Electron. 2016;63(4):2559‐2568.
[24] MichaelCA, SafacasAN. Dynamic and vibration analysis of a multimotor DC drive system with elastic shafts driving a tissue paper machine. IEEE Trans Ind Electron. 2007;54(4):2033‐2046.
[25] BartoszewiczA, LatosinskiP. Reaching law based discrete time sliding mode inventory management strategy. IEEE Access. 2016;4:10051‐10058.
[26] MaH, WuJ, XiongZ. Discrete‐time sliding‐mode control with improved quasi‐sliding‐mode domain. IEEE Trans Ind Electron. 2016;63(10):6292‐6304.
[27] ChakrabartyS, BartoszewiczA. Improved robustness and performance of discrete time sliding mode control systems. ISA Trans. 2016;65:143‐149.
[28] HeY, ChenBM, WuC. Improving transient performance in tracking control for linear multivariable discrete time systems with input saturation. Syst Control Lett. 2007;56(1):25‐33. · Zbl 1121.93325
[29] NguyenT, SuW, GajicZ, EdwardsC. Higher accuracy output feedback sliding mode control of sampled‐data systems. IEEE Trans Autom Control. 2016;61(10):3177‐3182. · Zbl 1359.93095
[30] MehtaAJ, BandyopadhyayB, InoueA. Reduced order observer design for servo system using duality to discrete time sliding surface design. IEEE Trans Ind Electron. 2010;57(11):3793‐3800.
[31] ChoiHH, JungJW. Discrete time fuzzy speed regulator design for PM synchronous motor. IEEE Trans Ind Electron. 2013;60(2):600‐607.
[32] BandyopadhyayB, JanardhananS. Discrete‐Time Sliding Mode Control: A Multirate Output Feedback Approach. Berlin, Germany: Springer‐Verlag; 2005. · Zbl 1118.93019
[33] XuS, LamJ. Robust Control and Filtering of Singular Systems. Berlin, Germany:Springer; 2006. · Zbl 1114.93005
[34] GahinetP, ApkarianP. A linear matrix inequality approach to H∞ control. Int J Robust Nonlinear Control. 1994;4(4):421‐448. · Zbl 0808.93024
[35] ZhangG, XiaY, ShiP. New bounded real lemma for discrete time singular systems. Automatica. 2008;44(3):886‐890. · Zbl 1283.93179
[36] FranklinGF, PowellJ, WorkmanML. Digital Control of Dynamic Systems. Boston, MA: Addison‐Wesley; 1997.
[37] BeheraAK, BandyopadhyayB. Steady‐state behaviour of discretized terminal sliding mode control. Automatica. 2015;54:176‐181. · Zbl 1318.93024
[38] ZhangJ, XiaY. Design of static output feedback sliding mode control for uncertain linear systems. IEEE Trans Ind Electron. 2010;57(6):2161‐2170.
[39] GaoW, WangY, HomaifaA. Discrete time variable structure control systems. IEEE Trans Ind Electron. 1995;42(2):117‐122.
[40] UmenoT, HoriY. Robust speed control of DC servomotors using modern two degrees of freedom controller design. IEEE Trans Ind Electron. 1991;38(5):363‐368.
[41] BandyopadhyayB, FulwaniD. High performance tracking controller for discrete plant using nonlinear sliding surface. IEEE Trans Ind Electron. 2009;56(9):3628‐3637.
[42] OgataK. Modern Control Engineering. 5th ed. Upper Saddle River, NJ:Pearson; 2010.
[43] ChenBM, LeeTH, PengK, VenkataramananV. Composite nonlinear feedback control for linear systems with input saturation: theory and an applications. IEEE Trans Autom Control. 2003;48(3):427‐439. · Zbl 1364.93294
[44] YangM, RobertsGW. Synthesis of high gain operational transconductance amplifiers for closed‐loop operation using a generalized controller‐based compensation method. IEEE Trans Circuits Syst I, Reg Papers. 2016;63(11):1794‐1806.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.