×

Bilevel programming for generating discrete representations in multiobjective optimization. (English) Zbl 1391.90555

Summary: The solution to a multiobjective optimization problem consists of the nondominated set that portrays all relevant trade-off information. The ultimate goal is to identify a Decision Maker’s most preferred solution without generating the entire set of nondominated solutions. We propose a bilevel programming formulation that can be used to this end. The bilevel program is capable of delivering an efficient solution that maps into a given set, provided that one exits. If the Decision Maker’s preferences are known a priori, they can be used to specify the given set. Alternatively, we propose a method to obtain a representation of the nondominated set when the Decision Maker’s preferences are not available. This requires a thorough search of the outcome space. The search can be facilitated by a partitioning scheme similar to the ones used in global optimization. Since the bilevel programming formulation either finds a nondominated solution in a given partition element or determines that there is none, a representation with a specified coverage error level can be found in a finite number of iterations. While building a discrete representation, the algorithm also generates an approximation of the nondominated set within the specified error factor. We illustrate the algorithm on the multiobjective linear programming problem.

MSC:

90C29 Multi-objective and goal programming
90B50 Management decision making, including multiple objectives

Software:

NBI; ASMO

References:

[1] Bard, J, Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68, 371-378, (1991) · Zbl 0696.90086 · doi:10.1007/BF00941574
[2] Bard, JF; Moore, JT, An algorithm for the discrete bilevel programming problem, Nav. Res. Logist. (NRL), 39, 419-435, (1992) · Zbl 0751.90111 · doi:10.1002/1520-6750(199204)39:3<419::AID-NAV3220390310>3.0.CO;2-C
[3] Benson, HP; Sayin, S, Towards finding global representations of the efficient set in multiple objective mathematical programming, Nav. Res. Logist., 44, 47-67, (1997) · Zbl 0882.90116 · doi:10.1002/(SICI)1520-6750(199702)44:1<47::AID-NAV3>3.0.CO;2-M
[4] Benson, HP; Sun, E, A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program, Eur. J. Oper. Res., 139, 26-41, (2002) · Zbl 1008.90027 · doi:10.1016/S0377-2217(01)00153-9
[5] Bokrantz, R; Forsgren, A, An algorithm for approximating convex Pareto surfaces based on dual techniques, INFORMS J. Comput., 25, 377-393, (2013) · doi:10.1287/ijoc.1120.0508
[6] Colson, B; Marcotte, P; Savard, G, A trust-region method for nonlinear bilevel programming: algorithm and computational experience, Comput. Optim. Appl., 30, 211-227, (2005) · Zbl 1078.90041 · doi:10.1007/s10589-005-4612-4
[7] Dächert, K; Klamroth, K, A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems, J. Global Optim., 61, 643-676, (2015) · Zbl 1338.90369 · doi:10.1007/s10898-014-0205-z
[8] Das, I; Dennis, JE, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8, 631-657, (1998) · Zbl 0911.90287 · doi:10.1137/S1052623496307510
[9] Dempe, S, A bundle algorithm applied to bilevel programming problems with non-unique lower level solutions, Comput. Optim. Appl., 15, 145-166, (2000) · Zbl 0947.90110 · doi:10.1023/A:1008735010803
[10] Dempe, S; Dutta, J, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Math. Program., 131, 37-48, (2012) · Zbl 1235.90145 · doi:10.1007/s10107-010-0342-1
[11] Dempe, S; Zemkoho, AB, On the karush-Kuhn-Tucker reformulation of the bilevel optimization problem, Nonlinear Anal. Theory Methods Appl., 75, 1202-1218, (2012) · Zbl 1254.90222 · doi:10.1016/j.na.2011.05.097
[12] Ecker, JG; Kouada, IA, Finding all efficient extreme points for multiple objective linear programs, Math. Program., 14, 249-261, (1978) · Zbl 0385.90105 · doi:10.1007/BF01588968
[13] Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005) · Zbl 1132.90001
[14] Ehrgott, M; Tenfelde-Podehl, D, Computation of ideal and nadir values and implications for their use in MCDM methods, Eur. J. Oper. Res., 151, 119-139, (2003) · Zbl 1043.90039 · doi:10.1016/S0377-2217(02)00595-7
[15] Eichfelder, G, An adaptive scalarization method in multiobjective optimization, SIAM J. Optim., 19, 1694-1718, (2009) · Zbl 1187.90252 · doi:10.1137/060672029
[16] Eichfelder G.: A Constraint Method in Nonlinear Multi-Objective Optimization. In: Barichard V., Ehrgott M., Gandibleux X., T’Kindt V. (eds.) Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 618. Springer, Berlin, Heidelberg (2009) · Zbl 1176.90532
[17] Faulkenberg, SL; Wiecek, MM, On the quality of discrete representations in multiple objective programming, Optim. Eng., 11, 423-440, (2010) · Zbl 1273.90184 · doi:10.1007/s11081-009-9099-x
[18] Faulkenberg, SL; Wiecek, MM, Generating equidistant representations in biobjective programming, Comput. Optim. Appl., 51, 1173-1210, (2012) · Zbl 1244.90206 · doi:10.1007/s10589-011-9403-5
[19] Fortuny-Amat, J; McCarl, B, A representation and economic interpretation of a two-level programming problem, J. Oper. Res. Soc., 32, 783-792, (1981) · Zbl 0459.90067 · doi:10.1057/jors.1981.156
[20] Fukushima M., Pang JS.: Convergence of a Smoothing Continuation Method for Mathematical Programs with Complementarity Constraints. In: Théra M., Tichatschke R. (eds.) Ill-posed Variational Problems and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems, vol. 477. Springer, Berlin, Heidelberg (1999) · Zbl 0944.65070
[21] Geoffrion, AM; Dyer, JS; Feinberg, A, An interactive approach for multi-criterion optimization, with an application to the operation of an Academic department, Manag. Sci., 19, 357-368, (1972) · Zbl 0247.90069 · doi:10.1287/mnsc.19.4.357
[22] Hamacher, HW; Pedersen, CR; Ruzika, S, Finding representative systems for discrete bicriterion optimization problems, Oper. Res. Lett., 35, 336-344, (2007) · Zbl 1169.90443 · doi:10.1016/j.orl.2006.03.019
[23] Hausdorff, F.: Set Theory. Chelsea Publ. Co., New York (1962) · Zbl 0060.12401
[24] Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990) · Zbl 0704.90057 · doi:10.1007/978-3-662-02598-7
[25] Jahn, J.: Vector Optimization. Springer, Berlin (2009) · Zbl 1209.90352
[26] Karasakal, E; Köksalan, M, Generating a representative subset of the nondominated frontier in multiple criteria decision making, Oper. Res., 57, 187-199, (2009) · Zbl 1181.90150 · doi:10.1287/opre.1080.0581
[27] Kim, I; Weck, O, Adaptive weighted-sum method for bi-objective optimization: Pareto front generation, Struct. Multidiscip. Optim., 29, 149-158, (2005) · doi:10.1007/s00158-004-0465-1
[28] Kim, IY; Weck, OL, Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation, Struct. Multidiscip. Optim., 31, 105-116, (2006) · Zbl 1245.90117 · doi:10.1007/s00158-005-0557-6
[29] Kirlik, G; Sayın, S, A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems, Eur. J. Oper. Res., 232, 479-488, (2014) · Zbl 1305.90368 · doi:10.1016/j.ejor.2013.08.001
[30] Kouvelis, P; Sayın, S, Algorithm robust for the bicriteria discrete optimization problem, Ann. Oper. Res., 147, 71-85, (2006) · Zbl 1188.90240 · doi:10.1007/s10479-006-0062-3
[31] Leyffer, S, A complementarity constraint formulation of convex multiobjective optimization problems, INFORMS J. Comput., 21, 257-267, (2009) · Zbl 1243.90198 · doi:10.1287/ijoc.1080.0290
[32] Marcotte, P; Zhu, DL, Exact and inexact penalty methods for the generalized bilevel programming problem, Math. Program., 74, 141-157, (1996) · Zbl 0855.90120 · doi:10.1007/BF02592209
[33] Masin, M; Bukchin, Y, Diversity maximization approach for multiobjective optimization, Oper. Res., 56, 411-424, (2008) · Zbl 1167.90644 · doi:10.1287/opre.1070.0413
[34] Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Berlin (1999) · Zbl 0949.90082
[35] Mitsos, A; Lemonidis, P; Barton, PI, Global solution of bilevel programs with a nonconvex inner program, J. Global Optim., 42, 475-513, (2008) · Zbl 1163.90700 · doi:10.1007/s10898-007-9260-z
[36] Özpeynirci, O; Köksalan, M, An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs, Manag. Sci., 56, 2302-2315, (2010) · Zbl 1232.90329 · doi:10.1287/mnsc.1100.1248
[37] Pereyra, V; Saunders, M; Castillo, J, Equispaced Pareto front construction for constrained bi-objective optimization, Math. Comput. Model., 57, 2122-2131, (2013) · Zbl 1286.90138 · doi:10.1016/j.mcm.2010.12.044
[38] Przybylski, A; Gandibleux, X; Ehrgott, M, A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives, Discret. Optim., 7, 149-165, (2010) · Zbl 1241.90138 · doi:10.1016/j.disopt.2010.03.005
[39] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, London (1998) · Zbl 0888.49001
[40] Sayın, S, An algorithm based on facial decomposition for finding the efficient set in multiple objective linear programming, Oper. Res. Lett., 19, 87-94, (1996) · Zbl 0865.90112 · doi:10.1016/0167-6377(95)00046-1
[41] Sayın, S, Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming, Math. Program., 87, 543-560, (2000) · Zbl 0970.90090 · doi:10.1007/s101070050128
[42] Sayın, S, A procedure to find discrete representations of the efficient set with specified coverage errors, Oper. Res., 51, 427-436, (2003) · Zbl 1163.90741 · doi:10.1287/opre.51.3.427.14951
[43] Sayın, S; Kouvelis, P, The multiobjective discrete optimization problem: a weighted MIN-MAX two-stage optimization approach and a bicriteria algorithm, Manag. Sci., 51, 1572-1581, (2005) · Zbl 1232.90331 · doi:10.1287/mnsc.1050.0413
[44] Shao, L; Ehrgott, M, Discrete representation of non-dominated sets in multi-objective linear programming, Eur. J. Oper. Res., 255, 687-698, (2016) · Zbl 1394.90519 · doi:10.1016/j.ejor.2016.05.001
[45] Stidsen, T; Andersen, KA; Dammann, B, A branch and bound algorithm for a class of biobjective mixed integer programs, Manag. Sci., 60, 1009-1032, (2014) · doi:10.1287/mnsc.2013.1802
[46] Sylva, J; Crema, A, A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs, Eur. J. Oper. Res., 180, 1011-1027, (2007) · Zbl 1122.90055 · doi:10.1016/j.ejor.2006.02.049
[47] Vaz, D; Paquete, L; Fonseca, CM; Klamroth, K; Stiglmayr, M, Representation of the non-dominated set in biobjective discrete optimization, Comput. Oper. Res., 63, 172-186, (2015) · Zbl 1349.90752 · doi:10.1016/j.cor.2015.05.003
[48] Vicente, L; Savard, G; Júdice, J, Descent approaches for quadratic bilevel programming, J. Optim. Theory Appl., 81, 379-399, (1994) · Zbl 0819.90076 · doi:10.1007/BF02191670
[49] Vicente, L; Savard, G; Judice, J, Discrete linear bilevel programming problem, J. Optim. Theory Appl., 89, 597-614, (1996) · Zbl 0851.90084 · doi:10.1007/BF02275351
[50] Vincent, T; Seipp, F; Ruzika, S; Przybylski, A; Gandibleux, X, Multiple objective branch and bound for mixed 0-1 linear programming: corrections and improvements for the biobjective case, Comput. Oper. Res., 40, 498-509, (2013) · Zbl 1349.90006 · doi:10.1016/j.cor.2012.08.003
[51] Wen, UP; Hsu, ST, Linear bi-level programming problems—a review, J. Oper. Res. Soc., 42, 125-133, (1991) · Zbl 0722.90046
[52] White, DJ, Epsilon efficiency, J. Optim. Theory Appl., 49, 319-337, (1986) · Zbl 0573.90085 · doi:10.1007/BF00940762
[53] Yu, PL; Zeleny, M, The set of all nondominated solutions in linear cases and a multicriteria simplex method, J. Math. Anal. Appl., 49, 430-468, (1975) · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.