×

On the inverse problem of finding cosmic strings and other topological defects. (English) Zbl 1391.83144

The authors study the detection of singularities of the Lorentzian metric measuring the Cosmic Microwave Background (CMB) radiation. The characterization of visible singularities via microlocal analysis of the geodesic ray is obtained. The inverse problem for the CMB measurements is formulated. The parametrization of the CMB measurements is given. The reduction of the linearized problem to inversion of the light ray transform is considered. The light ray transform in a translation invariant case is studied.

MSC:

83F05 Relativistic cosmology
83C75 Space-time singularities, cosmic censorship, etc.
85A25 Radiative transfer in astronomy and astrophysics
83E30 String and superstring theories in gravitational theory
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] Agol E., Hogan C.J., Plotkin R.M.: Hubble imaging excludes cosmic string lens. Phys. Rev. D 73(8), 087302 (2006) · doi:10.1103/PhysRevD.73.087302
[2] Anderson M.R.: The Mathematical Theory of Cosmic Strings. Series in High Energy Physics, Cosmology and Gravitation. IOP Publishing, Ltd., Bristol (2003) · Zbl 1010.83005
[3] Bobin J., Starck J.-L., Sureau F., Basak S.: Sparse component separation for accurate cosmic microwave background estimation. Astron. Astrophys. 550, A73 (2013) · doi:10.1051/0004-6361/201219781
[4] Coulson D., Ferreira P., Graham P., Turok N.: Microwave anisotropies from cosmic defects. Nature 368(6466), 27-31 (1994) · doi:10.1038/368027a0
[5] Cruz M., Turok N., Vielva P., Martinez-Gonzalez E., Hobson M.: A cosmic microwave background feature consistent with a cosmic texture. Science 318(5856), 1612-1614 (2007) · doi:10.1126/science.1148694
[6] Finch, D., Lan, I.-R., Uhlmann, G.: Microlocal analysis of the X-ray transform with sources on a curve. In: Uhlmann, G. (ed.) Inside Out: Inverse Problems and Applications. Mathematical Sciences Research Institute Publication, vol. 47, pp. 193-218. Cambridge University Press, Cambridge (2003) · Zbl 1086.35134
[7] Fraisse A.A., Ringeval C., Spergel D.N., Bouchet F.R.: Small-angle CMB temperature anisotropies induced by cosmic strings. Phys. Rev. D 78(4), 043535 (2008) · doi:10.1103/PhysRevD.78.043535
[8] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Invisibility and inverse problems. Bull. Am. Math. Soc. (N.S.) 46(1), 55-97 (2009) · Zbl 1159.35074 · doi:10.1090/S0273-0979-08-01232-9
[9] Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10(5-6), 685-693 (2003) · Zbl 1054.35127 · doi:10.4310/MRL.2003.v10.n5.a11
[10] Greenleaf A., Uhlmann G.: Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58(1), 205-240 (1989) · Zbl 0668.44004 · doi:10.1215/S0012-7094-89-05811-0
[11] Greenleaf A., Uhlmann G.: Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J. Funct. Anal. 89(1), 202-232 (1990) · Zbl 0717.44001 · doi:10.1016/0022-1236(90)90011-9
[12] Greenleaf A., Uhlmann G.: Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II. Duke Math. J. 64(3), 415-444 (1991) · Zbl 0760.58042 · doi:10.1215/S0012-7094-91-06422-7
[13] Guillemin, V.: On some results of Gel’fand in integral geometry. In: Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), Proceedings of Symposia in Pure Mathematics, vol. 43, pp. 149-155. American Mathematical Society, Providence (1985) · Zbl 1058.44003
[14] Guillemin V.: Cosmology in (2 + 1)-Dimensions, Cyclic Models, and Deformations of M2,1, Annals of Mathematics Studies, vol. 121. Princeton University Press, Princeton (1989) · Zbl 0697.53003
[15] Hammond D.K., Wiaux Y., Vandergheynst P.: Wavelet domain bayesian denoising of string signal in the cosmic microwave background. Mon. Not. R. Astron. Soc. 398(3), 1317-1332 (2009) · doi:10.1111/j.1365-2966.2009.14978.x
[16] Hörmander L.: Fourier integral operators. I. Acta Math. 127(1-2), 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[17] Hörmander L.: The Analysis of Linear Partial Differential Operators. IV, Volume 275 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1985) · Zbl 0612.35001
[18] Hörmander L.: The Analysis of Linear Partial Differential Operators. I, Volume 256 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1990) · Zbl 0687.35002
[19] Lang, S.: Real analysis, 2nd edn. Addison-Wesley Publishing Company, Advanced Book Program, Reading (1983) · Zbl 0502.46003
[20] LIGO Scientific Collaboration and Virgo Collaboration. Constraints on cosmic strings from the LIGO-virgo gravitational-wave detectors. Phys. Rev. Lett. 112(13), 131101 (2014)
[21] LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)
[22] Paternain G.P., Salo M., Uhlmann G.: Tensor tomography: progress and challenges. Chin. Ann. Math. Ser. B 35(3), 399-428 (2014) · Zbl 1303.92053 · doi:10.1007/s11401-014-0834-z
[23] Planck Collaboration. Planck 2013 results. XIX. The integrated Sachs-Wolfe effect. Astron. Astrophys. 571, A19 (2014) · Zbl 0760.58042
[24] Planck Collaboration. Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 571, A15 (2014) · Zbl 0717.44001
[25] Planck Collaboration. Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. 571, A23 (2014) · Zbl 0668.44004
[26] Planck Collaboration. Planck 2013 results. XXV. Searches for cosmic strings and other topological defects. Astron. Astrophys. 571, A25 (2014) · Zbl 1054.35127
[27] Quinto E.T.: Singularities of the X-ray transform and limited data tomography in R2 and R3. SIAM J. Math. Anal. 24(5), 1215-1225 (1993) · Zbl 0784.44002 · doi:10.1137/0524069
[28] Sachs R.K., Wolfe A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73 (1967) · doi:10.1086/148982
[29] Sachs R.K., Wu H.-H.: General Relativity for Mathematicians. Springer, New York (1977) · Zbl 0373.53001 · doi:10.1007/978-1-4612-9903-5
[30] Sarangi S., Tye S.-H.: Cosmic string production towards the end of brane inflation. Phys. Lett. B 536(3-4), 185-192 (2002) · Zbl 0995.83513 · doi:10.1016/S0370-2693(02)01824-5
[31] Sazhin M., Longo G., Capaccioli M., Alcala J.M., Silvotti R., Covone G., Khovanskaya O., Pavlov M., Pannella M., Radovich M., Testa V.: CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?. Mon. Not. R. Astron. Soc. 343(2), 353-359 (2003) · doi:10.1046/j.1365-8711.2003.06568.x
[32] Sazhina O.S., Scognamiglio D., Sazhin M.V.: Observational constraints on the types of cosmic strings. Eur. Phys. J. C 74(8), 2972 (2014) · doi:10.1140/epjc/s10052-014-2972-6
[33] Schild R., Masnyak I.S., Hnatyk B.I., Zhdanov V.I.: Anomalous fluctuations in observations of q0957+561a,b: smoking gun of a cosmic string?. Astron. Astrophys. 422(2), 477-482 (2004) · doi:10.1051/0004-6361:20040274
[34] Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Inverse and Ill-Posed Problems Series. VSP, Utrecht (1994) · Zbl 0883.53004
[35] Stefanov, P., Uhlmann, G.: Microlocal Analysis and Integral Geometry (in progress) · Zbl 1138.53039
[36] Stefanov P., Uhlmann G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123(3), 445-467 (2004) · Zbl 1058.44003 · doi:10.1215/S0012-7094-04-12332-2
[37] Stefanov P., Uhlmann G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18(4), 975-1003 (2005) · Zbl 1079.53061 · doi:10.1090/S0894-0347-05-00494-7
[38] Taylor M.E.: Partial Differential Equations. I. Basic Theory. Applied Mathematical Sciences, vol. 115. Springer, New York (1996) · Zbl 0869.35002
[39] Vilenkin A., Shellard E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1994) · Zbl 0978.83052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.