×

A piecewise Korn inequality in SBD and applications to embedding and density results. (English) Zbl 1391.74227

Summary: We present a piecewise Korn inequality for generalized special functions of bounded deformation (\(GSBD^2\)) in a planar setting generalizing the classical result in elasticity theory to the setting of functions with jump discontinuities. We show that for every configuration there is a partition of the domain such that on each component of the cracked body the distance of the function from an infinitesimal rigid motion can be controlled solely in terms of the linear elastic strain. In particular, the result implies that \(GSBD^2\) functions have bounded variation after subtraction of a piecewise infinitesimal rigid motion. As an application we prove a density result in \(GSBD^2\) in dimension two. Moreover, for all \(d \geq 2\) we show \(GSBD^2(\Omega) \subset (GBV(\Omega;{\mathbb R}))^d\) and the embedding \(SBD^2(\Omega) \cap L^\infty(\Omega;{\mathbb R}^d) \hookrightarrow SBV(\Omega;{\mathbb R}^d)\) into the space of special functions of bounded variation (\(SBV\)). Finally, we present a Korn-Poincaré inequality for functions with small jump sets in arbitrary space dimension.

MSC:

74R10 Brittle fracture
49J45 Methods involving semicontinuity and convergence; relaxation
70G75 Variational methods for problems in mechanics
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] G. Acosta, R. G. Durán, and M. A. Muschietti, Solutions of the divergence operator on John domains, Adv. Math., 206 (2006), pp. 373–401. · Zbl 1142.35008
[2] G. Alberti, Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 239–274. · Zbl 0791.26008
[3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., 111 (1990), pp. 291–322. · Zbl 0711.49064
[4] L. Ambrosio, A. Coscia, and G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal., 139 (1997), pp. 201–238. · Zbl 0890.49019
[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, UK, 2000. · Zbl 0957.49001
[6] G. Bellettini, A. Coscia, and G. Dal Maso, Compactness and lower semicontinuity properties in \(SBD(Ω)\), Math. Z., 228 (1998), pp. 337–351. · Zbl 0914.46007
[7] B. Bourdin, G. A. Francfort, J. J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), pp. 5–148. · Zbl 1176.74018
[8] A. Braides and V. Chiadò Piat, Integral representation results for functionals defined in \(SBV(Ω;\R^m)\), J. Math. Pures Appl., 75 (1996), pp. 595–626. · Zbl 0880.49010
[9] A. Braides, A. Defranceschi, and E. Vitali, Homogenization of free discontinuity problems, Arch. Ration. Mech. Anal., 135 (1996), pp. 297–356. · Zbl 0924.35015
[10] S. Buckley and P. Koskela, Sobolev–Poincaré implies John, Math. Res. Lett., 2 (1995), pp. 577–593. · Zbl 0847.30012
[11] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167 (2003), pp. 167–211. · Zbl 1030.74007
[12] A. Chambolle, An approximation result for special functions with bounded deformation, J. Math. Pures Appl., 83 (2004), pp. 929–954. · Zbl 1084.49038
[13] A. Chambolle, S. Conti, and G. Francfort, Korn-Poincaré inequalities for functions with a small jump set, Indiana Univ. Math. J., 65 (2016), pp. 1373–1399. · Zbl 1357.49151
[14] B. Chambolle and V. Crismale, A Density Result in \(GSBD^p\) with Applications to the Approximation of Brittle Fracture Energies, preprint, , 2017.
[15] A. Chambolle, A. Giacomini, and M. Ponsiglione, Piecewise rigidity, J. Funct. Anal., 244 (2007), pp. 134–153. · Zbl 1110.74046
[16] S. Conti, D. Faraco, and F. Maggi, A new approach to counterexamples to \(L^1\) estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 175 (2005), pp. 287–300. · Zbl 1080.49026
[17] S. Conti, M. Focardi, and F. Iurlano, Which special functions of bounded deformation have bounded variation?, Proc. Roy. Soc. Edinburgh Sect. A, to appear. · Zbl 1381.26017
[18] S. Conti, M. Focardi, F. Iurlano, Integral representation for functionals defined on \(SBD^p\) in dimension two, Arch. Ration. Mech. Anal., 223 (2017), pp. 1337–1374. · Zbl 1398.49007
[19] G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions, Ann. Univ. Ferrara Sez., 43 (1997), pp. 27–49. · Zbl 0916.49002
[20] G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS), 15 (2013), pp. 1943–1997. · Zbl 1271.49029
[21] G. Dal Maso, G. A. Francfort, and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), pp. 165–225. · Zbl 1064.74150
[22] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), pp. 199–210. · Zbl 0715.49014
[23] E. De Giorgi, M. Carriero, and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., 108 (1989), pp. 195–218. · Zbl 0682.49002
[24] L. Diening, M. R\ruz̆ic̆ka, and K. Schumacher, A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 35 (2010), pp. 87–114. · Zbl 1194.26022
[25] H. Federer, Geometric Measure Theory, Springer, New York, 1969. · Zbl 0176.00801
[26] M. Focardi and F. Iurlano, Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity, SIAM J. Math. Anal., 46 (2014), pp. 2936–2955. · Zbl 1301.49030
[27] G. A. Francfort, J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), pp. 1319–1342. · Zbl 0966.74060
[28] G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math., 56 (2003), pp. 1465–1500. · Zbl 1068.74056
[29] M. Friedrich, A derivation of linearized Griffith energies from nonlinear models, Arch. Ration. Mech. Anal., 225 (2017), pp. 425–467. · Zbl 1367.35169
[30] M. Friedrich, On a decomposition of regular domains into John domains with uniform constants, ESAIM Control Optim. Calc. Var., to appear. · Zbl 1414.26032
[31] M. Friedrich, A Korn-type inequality in SBD for functions with small jump sets, Math. Models Methods Appl. Sci., 27 (2017), pp. 2461–2484. · Zbl 1386.74123
[32] M. Friedrich and B. Schmidt, A Quantitative Geometric Rigidity Result in SBD, preprint, , 2015.
[33] M. Friedrich and F. Solombrino, Quasistatic crack growth in 2D-linearized elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), pp. 27–64. · Zbl 1386.74124
[34] G. Friesecke, R. D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), pp. 1461–1506. · Zbl 1021.74024
[35] G Geymonat and G. Gilardi, Contre-exemples á l’inégalité de Korn et au Lemme de Lions dans des domaines irréguliers, in Equations aux Dérivées Partielles et Applications, Gauthiers-Villars, Paris, 1998, pp. 541–548. · Zbl 0915.35018
[36] F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies, Calc. Var. Partial Differential Equations, 51 (2014), pp. 315–342. · Zbl 1297.49080
[37] F. John, Rotation and strain, Comm. Pure Appl. Math., 14 (1961), pp. 391–413. · Zbl 0102.17404
[38] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 4 (1978), pp. 383–401. · Zbl 0406.30013
[39] J. A. Nitsche, On Korn’s second inequality, RAIRO Anal. Numér., 15 (1981), pp. 237–248. · Zbl 0467.35019
[40] D. A. Ornstein, A non-inequality for differential operators in the \(L^1\)-norm, Arch. Ration. Mech. Anal., 11 (1962), pp. 40–49. · Zbl 0106.29602
[41] B. Schmidt, F. Fraternali, and M. Ortiz, Eigenfracture: an eigendeformation approach to variational fracture, SIAM Multiscale Model. Simul., 7 (2009), pp. 1237–1266. · Zbl 1173.74040
[42] E. M. Stein, Singular Integrals an Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. · Zbl 0207.13501
[43] J. Väisälä, Unions of John domains, Proc. Amer. Math. Soc., 128 (2000), pp. 1135–1140. · Zbl 0973.30019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.