×

A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy. (English) Zbl 1391.35416

Favini, Angelo (ed.) et al., New prospects in direct, inverse and control problems for evolution equations. Selected papers based on the presentations at the international conference “Differential equations, inverse problems and control theory, Cortona, Italy, June 16–21, 2013. Cham: Springer (ISBN 978-3-319-11405-7/hbk; 978-3-319-11406-4/ebook). Springer INdAM Series 10, 121-139 (2014).
Summary: We study an identification problem associated with a strongly degenerate parabolic evolution equation of the type \[ y_{t} -Ay = f(t,x), \quad (t,x) \in Q:= (0,T) \times (0,L) \] equipped with Dirichlet boundary conditions, where \(T > 0\), \(L > 0\), and \(f\) is in a suitable \(L^{2}\) space. The operator \(A\) has the form \(A_{1}y = (uy_{x})_{x}\), or \(A_{2}y = uy_{xx}\), and strong degeneracy means that the diffusion coefficient \(u \in W^{1, \infty}(0, L)\) satisfies \(u(x) > 0\) except for an interior point of \((0, L)\) and \(\frac{1} {u}\not\in L^{1}(0,L)\). Since an identification problem related to \(A_{1}\) was studied in Fragnelli et al. (J. Evol. Equ., 2014), here we devote more attention to the identification problem of \(u\) when \(A = A_{2}\). In this setting new weighted spaces of \(L^{2}\)-type must be considered. Our techniques are based on the minimization problem of a functional depending on \(u\), provided that some observations are known. Optimality conditions are also given.
For the entire collection see [Zbl 1357.35004].

MSC:

35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] Ait Ben Hassi, E.M., Ammar Khodja, F., Hajjaj, A., Maniar, L.: Null controllability of degenerate parabolic cascade systems. Port. Math. 68, 345-367 (2011) · Zbl 1231.35103
[2] Ait Ben Hassi, E.M., Ammar Khodja, F., Hajjaj, A., Maniar, L.: Carleman estimates and null controllability of coupled degenerate systems. Evol. Equ. Control Theory 2, 441-459 (2013) · Zbl 1272.35124
[3] Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains. Electron. J. Differ. Equ. 2006, 1-20 (2006) · Zbl 1112.35335
[4] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media 2, 693-713 (2007) · Zbl 1140.93011 · doi:10.3934/nhm.2007.2.695
[5] Favini, A., Marinoschi, G.: Identification of the time derivative coefficient in a fast diffusion degenerate equation. J. Optim. Theory Appl. 145, 249-269 (2010) · Zbl 1201.49042 · doi:10.1007/s10957-009-9635-z
[6] Flores, C., De Teresa, L.: Carleman estimates for degenerate parabolic equations with first order terms and applications. C. R. Math. Acad. Sci. Paris 348, 391-396 (2010) · Zbl 1188.35032 · doi:10.1016/j.crma.2010.01.007
[7] Fragnelli, G.: Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete Continuous Dyn. Syst. Ser. S 6, 687-701 (2013) · Zbl 1258.93025 · doi:10.3934/dcdss.2013.6.687
[8] Fragnelli, G., Mugnai, D.: Carleman estimates and observability inequalities for parabolic equations with interior degeneracy. Adv. Nonl. Anal. 2, 339-378 (2013) · Zbl 1282.35101
[9] Fragnelli, G., Marinoschi, G., Mininni, R.M., Romanelli, S.: Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy. J. Evol. Equ. 2014. DOI 10.1007/s00028-14-0247-1 · Zbl 1325.35278 · doi:10.1007/s00028-14-0247-1
[10] Fragnelli, G., Ruiz Goldstein, G., Goldstein, J.A., Romanelli, S.: Generators with interior degeneracy on spaces of L^2 type. Electron. J. Differ. Equ. 2012, 1-30 (2012) · Zbl 1291.30210 · doi:10.1186/1687-1847-2012-1
[11] Lions, J.L.: Quelques méthodes de resolution des problèmes aux limites non linéaires. Dunod, Paris (1969) · Zbl 0189.40603
[12] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.