×

On the solutions of the space and time fractional Benjamin-Bona-Mahony equation. (English) Zbl 1391.35343

Summary: In this paper, the extended trial equation method is used for constructing exact solutions of fractional partial differential equations (FPDEs) in the sense of Jumarie’s modified Riemann-Liouville derivative. To convert a fractional partial differential equation into its ordinary differential equation of integer order is used the fractional complex transformation. With the aid of symbolic computation, we choose the space and time fractional Benjamin-Bona-Mahony (BBM) equation to illustrate the validity and advantages of this method. As a result, some new exact solutions including elliptic integral function solutions and soliton solutions to this problem are successfully established. The proposed approach can also be applied to other fractional partial differential equations (FPDEs).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Akgul A, Kilicman A, Inc M (2013) Improved \((G^{′ }/G)\)-expansion method for the space and time fractional foam drainage and KdV equations. Abstr Appl Anal 2013. Article ID 414353, p 7 · Zbl 1293.35007
[2] Alzaidy, JF, Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics, Br J Math Comput Sci, 3, 153-163, (2013) · doi:10.9734/BJMCS/2013/2908
[3] Bekir, A; Guner, O, Exact solutions of nonlinear fractional differential equations by \((G^{′ }/G)\)-expansion method, Chin Phys B, 22, 110202, (2013) · doi:10.1088/1674-1056/22/11/110202
[4] Bekir, A; Guner, O; Bhrawy, AH; Biswas, A, Solving nonlinear fractional differential equations using exp-function and \((G^{′ }/G)\)-expansion method, Romanian J Phys, 60, 360-378, (2015)
[5] Bekir, A; Guner, O; Unsal, O, The first integral method for exact solutions of nonlinear fractional differential equations, J Comput Nonlinear Dyn, 10, 021020, (2015) · doi:10.1115/1.4028065
[6] Bekir, A; Unsal, O, Analytic treatment of nonlinear evolution equations using first integral method, Pramana J Phys, 79, 3-17, (2012) · Zbl 1277.35110 · doi:10.1007/s12043-012-0282-9
[7] Benjamin, TB; Bona, JL; Mahony, JJ, Model equations for long waves in nonlinear dispersive systems, Philos Trans R Soc Lond A, 272, 47-55, (1972) · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[8] Bhrawy, AH; Alzaidy, JF; Abdelkawy, MA; Biswas, A, Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations, Nonlinear Dyn, 84, 1553-1567, (2016) · doi:10.1007/s11071-015-2588-x
[9] Biswas, A; Bhrawy, AH; Abdelkawy, MA; Alshaery, AA; Hilal, EM, Symbolic computation of some nonlinear fractional differential equations, Romanian J Phys, 59, 433-442, (2014)
[10] Cheng, YJ, Classification of traveling wave solutions to the Vakhnenko equations, Comput Math Appl, 62, 3987-3996, (2011) · Zbl 1236.35145 · doi:10.1016/j.camwa.2011.09.060
[11] Cui, M, Compact finite difference method for the fractional diffusion equation, J Comput Phys, 228, 7792-7804, (2009) · Zbl 1179.65107 · doi:10.1016/j.jcp.2009.07.021
[12] Ekici, M; Mirzazadeh, M; Eslami, M, Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion, Nonlinear Dyn, 84, 669-676, (2016) · Zbl 1354.35012 · doi:10.1007/s11071-015-2515-1
[13] El-Sayed, AMA; Gaber, M, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys Lett A, 359, 175-182, (2006) · Zbl 1236.35003 · doi:10.1016/j.physleta.2006.06.024
[14] Eslami, M; Vajargah, BF; Mirzazadeh, M; Biswas, A, Application of first integral method to fractional partial differential equations, Indian J Phys, 88, 177-184, (2014) · doi:10.1007/s12648-013-0401-6
[15] Filiz, A; Sonmezoglu, A; Ekici, M; Duran, D, A new approach for soliton solutions of RLW equation and (1+2)-dimensional nonlinear schrödinger’s equation, Math Rep, 17, 43-56, (2015) · Zbl 1374.35332
[16] Gepreel, KA; Nofal, TA, Extended trial equation method for nonlinear partial differential equations, Zeitschrift fr Naturforschung A, 70, 269-279, (2015)
[17] Gepreel, KA; Omran, S, Exact solutions for nonlinear partial fractional differential equations, Chin Phys B, 21, 110204, (2012) · Zbl 1274.70029 · doi:10.1088/1674-1056/21/11/110204
[18] Guo, SM; Mei, LQ; Li, Y; Sun, YF, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys Lett A, 376, 407-411, (2012) · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[19] He, JH, A new approach to nonlinear partial differential equations, Commun Nonlinear Sci Numer Simul, 2, 230-235, (1997) · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90007-1
[20] He, JH, Homotopy perturbation technique, Comput Methods Appl Mech Eng, 178, 257-262, (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[21] He, JH, A coupling method of homotopy technique and a perturbation technique for non-linear problems, Int J Non-Linear Mech, 35, 37-43, (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[22] Huang, Q; Huang, G; Zhan, H, A finite element solution for the fractional advection-dispersion equation, Adv Water Resour, 31, 1578-1589, (2008) · doi:10.1016/j.advwatres.2008.07.002
[23] Jumarie, G, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput Math Appl, 51, 1367-1376, (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[24] Jumarie, G, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J Appl Math Comput, 24, 31-48, (2007) · Zbl 1145.26302 · doi:10.1007/BF02832299
[25] Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San Diego · Zbl 1092.45003
[26] Kolebaje O, Popoola O (2014) Assessment of the exact solutions of the space and time fractional Benjamin-Bona-Mahony equation via the \((G^{′ }/G)\)-expansion method, modified simple equation method, and Liufs theorem, ISRN Math Phys 2014. Article ID 217184, p 11 · Zbl 1392.35062
[27] Li, ZB; He, JH, Fractional complex transform for fractional differential equations, Math Comput Appl, 15, 970-973, (2010) · Zbl 1215.35164
[28] Liu, CS, Trial equation method and its applications to nonlinear evolution equations, Acta Phys Sin, 54, 2505-2509, (2005) · Zbl 1202.35059
[29] Liu, CS, Trial equation method for nonlinear evolution equations with rank inhomogeneous: mathematical discussions and applications, Commun Theor Phys, 45, 219-223, (2006) · doi:10.1088/0253-6102/45/2/005
[30] Liu, CS, A new trial equation method and its applications, Commun Theor Phys, 45, 395-397, (2006) · doi:10.1088/0253-6102/45/3/003
[31] Liu, CS, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput Phys Commun, 181, 317-324, (2010) · Zbl 1205.35262 · doi:10.1016/j.cpc.2009.10.006
[32] Lu, B, Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys Lett A, 376, 2045-2048, (2012) · Zbl 1266.35139 · doi:10.1016/j.physleta.2012.05.013
[33] Lu, B, The first integral method for some time fractional differential equations, J Math Anal Appl, 395, 684-693, (2012) · Zbl 1246.35202 · doi:10.1016/j.jmaa.2012.05.066
[34] Meng F, Feng Q (2013) A new fractional subequation method and its applications for space-time fractional partial differential equations. J Appl Math 2013. Article ID 481729, p 10 · Zbl 1271.35068
[35] Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York · Zbl 0789.26002
[36] Mirzazadeh, M; Eslami, M; Biswas, A, Solitons and periodic solutions to a couple of fractional nonlinear evolution equations, Pramana J Phys, 82, 465-476, (2014) · doi:10.1007/s12043-013-0679-0
[37] Odibat, Z; Momani, S, Fractional Green function for linear time-fractional equations of fractional order, Appl Math Lett, 21, 194-199, (2008) · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[38] Pandir Y, Gurefe Y, Kadak U, Misirli E (2012) Classification of exact solutions for some nonlinear partial differential equations with generalized evolution. Abstr Appl Anal 2012. Article ID478531, p 16 · Zbl 1247.35124
[39] Pandir Y, Gurefe Y, Misirli E (2013) The extended trial equation method for some time fractional differential equations. Discret Dyn Nat Soc 2013. Article ID 491359, p 13 · Zbl 1266.37033
[40] Podlubny I (1999) Fractional differential equations. Academic Press, San Diego · Zbl 0924.34008
[41] Tong, B; He, Y; Wei, L; Zhang, X, A generalized fractional sub-equation method for fractional differential equations with variable coefficients, Phys Lett A, 376, 2588-2590, (2012) · Zbl 1266.34014 · doi:10.1016/j.physleta.2012.07.018
[42] Wu, G; Lee, EWM, Fractional variational iteration method and its application, Phys Lett A, 374, 2506-2509, (2010) · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034
[43] Yusufoglu, E; Bekir, A; Alp, M, Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine-cosine method, Chaos Soliton Fractals, 37, 1193-1197, (2008) · Zbl 1148.35351 · doi:10.1016/j.chaos.2006.10.012
[44] Zhang, S; Zhang, HQ, Fractional sub-equation method and its applications to nonlinear fractional pdes, Phys Lett A, 375, 1069-1073, (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[45] Zheng, B, \((G^{′ }/G)\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun Theor Phys, 58, 623-630, (2012) · Zbl 1264.35273 · doi:10.1088/0253-6102/58/5/02
[46] Zheng, B; Wen, C, Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Adv Differ Equ, 2013, 199, (2013) · Zbl 1379.35347 · doi:10.1186/1687-1847-2013-199
[47] Zheng B (2013) Exact solutions for some fractional partial differential equations by the \((G^{′ }/G)\)-method. Math Probl Eng 2013. Article ID 826369, p 13 · Zbl 1299.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.