×

Holomorphically Weyl-decomposably regular. (English) Zbl 1391.35290

Summary: We consider left and right Fredholm-decomposably regular operators introduced in [S. Zhang et al., Banach J. Math. Anal. 7, No. 1, 41–58 (2013; Zbl 1288.47017)], and the corresponding holomorphic versions. Using their results established by Zhang et al. in [loc. cit.], we give new properties of these classes of operators. We introduce the concept of Weyl-decomposably regular operator and the corresponding holomorphic version in the setting of \(\mathcal L(X)\), where \(\mathcal L(X)\) is the set of all bounded operators from Banach space \(X\) to \(X\), and we give various characterizations of this class of operators.

MSC:

35P05 General topics in linear spectral theory for PDEs
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
47A53 (Semi-) Fredholm operators; index theories

Citations:

Zbl 1288.47017

References:

[1] F. Abdmouleh, A. Jeribi, Gustafson, Weidman, Kato, Wolf, Schechter, Browder, Racocevic and Schmoeger essential spectra of the sum of two bounded operators and application to a transport operator, Math. Nachr. 284 (2011), 166-176.
[2] P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, XX Escuela Venzolana de Matematicas, Ed. Ivic, Merida (Venezuela) 2007. · Zbl 1135.47300
[3] H. Baloudi and A. Jeribi, Left-Right Fredholm and Weyl Spectra of the sum of Two Bounded Operator and Application, Med. J. Math. 11 (2014), 939-953. · Zbl 1342.47019
[4] A. Bakkali and A. Tajmouati, On holomorphically decomposable Fredholm spectrum and commuting Riesz perturbations, Int. J. Math. Anal. 5 (2011), 887-900. · Zbl 1237.47003
[5] A. Bakkali and A. Tajmouati, On holomorphically decomposable Fredholm operators, Ita. J. of pure and applied math, 31 (2013), 7-14. · Zbl 1331.47018
[6] S.R Caradus, Generalized inverse and operator theory, Queen’s paper in pure and appl. Math 50, Queen’s university, KingstonOntario 1978.
[7] K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969), 121-127. · Zbl 0189.44104
[8] R. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328-330. · Zbl 0617.46052
[9] R. Harte, Invertibility and singularity for bounded linear operator, Marcel Dekker 1988. · Zbl 0636.47001
[10] R. Harte, Taylor exactness and Kato’s jump, Proc. Amer. Math. 119 (1998), 793-801.
[11] A. Jeribi, N. Moalla, A characterization of some subsets of Schechter’s essential spectrum and application to singular transport equation, J. Math. Anal. Appl. 358 (2009), 434-444. · Zbl 1188.47013
[12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. · Zbl 0148.12601
[13] T. Kato, Perturbation Theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math, 6 (1958), 261-322. · Zbl 0090.09003
[14] K. B. Laursen and M. Neumann, Introduction to local spectral theory, Clarendon Press Oxford 2000.
[15] M. Mbekhta, Gnralisaralisation de la dcomposition de Kato aux oprateurs paranormaux et spectraux, Glasg. Math. J. 29 (1987), 159-175. · Zbl 0657.47038
[16] M. Mbekhta, A. Ouahab, Oprateur s-rguliers dans un espace de Banach et thorie spectrale, Acta Sci. Math. (Szeged), 59 (1994), 525-543.
[17] V. M ”uller, Spectral theory of linear operators and spectral system in Banach algebras, Oper. Theo. Adva. Appl. 139 2003.
[18] V. M ”uller, On the regular spectrum, J. Oper. Theory 31 (1994), 363-380.
[19] V. Rakocevic, A note on regular elements in Calkin algebras, Collect. Math. 43 (1992), 37-42.
[20] P. Saphar, Contribution l’tude des applications linaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. · Zbl 0139.08502
[21] C. Schmoeger, The punctured neighbourhood theorem in Banach algebras, Proc. Roy. Irish Acad. Sect. 91 (1991), 205-218. · Zbl 0793.46027
[22] C. Schmoeger, On decomposably regular operators, Portugal. Math 54 (1997), 41-50. · Zbl 0891.47004
[23] Q. Zeng, H. Zhong and S. Zhang, On left and right decomposably regular operators, Banach J. Math. Anal. 7 (2013), 41-58. · Zbl 1288.47017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.