×

On the Gruenberg-Kegel graph of integral group rings of finite groups. (English) Zbl 1391.16042

Let \(\mathbb{Z}G\) be the integral group ring of the finite group \(G\). The ‘prime graph question’ (PQ) asks whether the prime graph \(\Gamma(G)\), with vertices prime divisors of the group, \(p\) and \(q\) joined by an edge if there is an element of the group of order \(pq\), coincides with \(\Gamma(V(\mathbb{Z}G))\), a weak version of the first Zassenhaus conjecture on the conjugacy of torsion units of \(V(\mathbb{Z}G)\) with trivial units in \(\mathbb{Q}G\). (PQ) holds true for all soluble \(G\) due to the first author [Contemp. Math. 420, 215–228 (2006; Zbl 1126.20001)]. By the Hertweck-Luthar-Passi method, V. Bovdi and the second author verified (PQ) for some sporadic simple groups in a series of papers, see for instance [J. Algebra Appl. 11, No. 1, Article ID 1250016, 10 p. (2012; Zbl 1247.16032)]. There is an ongoing research by A. Bächle and L. Margolis [Proc. Edinb. Math. Soc., II. Ser. 60, No. 4, 813–830 (2017; Zbl 1380.16036)] on (PQ), they implemented the above method as the GAP package HeLP, Version 3.0 (2016).
An almost simple group of type \(S\) is a subgroup of \(\mathrm{Aut}(S)\) containing \(\mathrm{Inn}(S)\cong S\), where \(S\) is a finite non-abelian simple group. The main results of the present paper include the following. If for each almost simple group \(X\) occuring as an image of \(G\) (PQ) holds true, then (PQ) also holds true for \(G\). If the order of each almost simple group \(X\) occuring as an image of \(G\) is divisible by exactly three different primes, then (PQ) holds true for \(G\). If all composition factors of \(G\) are of prime order or isomorphic to \(\mathrm{PSL}(2,p^f)\) with \(f\in\{1,2\}\) and \(p\geq5\) then (PQ) holds true for \(G\).

MSC:

16U60 Units, groups of units (associative rings and algebras)
16S34 Group rings
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20D08 Simple groups: sporadic groups

References:

[1] Association for Computing Machinery, Result and Artifact Review and Badging, http://www.acm.org/publications/policies/artifact-review-badging.
[2] A. Bächle and M. Caicedo, On the prime graph question for almost simple groups with an alternating socle, preprint (2015), arXiv:1510.04598 [math.GR]. · Zbl 1381.16037
[3] Bächle, A. and Kimmerle, W., On torsion subgroups in integral group rings of finite groups, J. Algebra326 (2011) 34-46. · Zbl 1228.16037
[4] A. Bächle and L. Margolis, Rational conjugacy of torsion units in integral group rings of non-solvable groups, preprint (2013), arXiv:1305.7419v2 [math.RT]. · Zbl 1380.16036
[5] A. Bächle and L. Margolis, HeLP — Hertweck-Luthar-Passi method, Version 3.0; GAP package (2016), http://homepages.vub.ac.be/abachle/help/.
[6] A. Bächle and L. Margolis, On the prime graph question for integral group rings of 4-primary groups I, preprint (2016), arXiv:1601.05689 [math.RT]. · Zbl 1393.16018
[7] A. Bächle and L. Margolis, On the prime graph question for integral group rings of 4-primary groups II, preprint (2016), arXiv:1606.01506 [math.RT]. · Zbl 1393.16018
[8] Berman, S. D., On certain properties of integral group rings (Russian), Dokl. Akad. Nauk SSSR (N.S.)91 (1953) 7-9. · Zbl 0050.25504
[9] Bovdi, V., Jespers, E. and Konovalov, A., Torsion units in integral group rings of Janko simple groups, Math. Comp.80(273) (2011) 593-615. · Zbl 1209.16026
[10] Bovdi, V. and Konovalov, A., Torsion units in integral group rings of Higman-Sims simple group, Studia Sci. Math. Hungar.47(1) (2010) 1-11. · Zbl 1221.16026
[11] Bovdi, V., Konovalov, A. and Linton, S., Torsion units in integral group rings of Conway simple groups, Int. J. Algebra Comput.21(4) (2011) 615-634. · Zbl 1234.16025
[12] T. Breuer, The GAP Character Table Library, Version 1.2.2; GAP package (2013), http://www.math.rwth-aachen.de/\({}^\sim\) Thomas.Breuer/ctbllib.
[13] T. Breuer, Constructing the ordinary character tables of some Atlas groups using character theoretic methods, preprint (2016), arXiv:1604.00754 [math.RT].
[14] T. Breuer, G. Malle and E. A. O’Brien, Reliability and reproducibility of Atlas information, preprint (2016), arXiv:1603.08650 [math.GR], April (2016). · Zbl 1448.20005
[15] W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger, Normaliz: Algorithms for rational cones and affine monoids, available at https://www.normaliz.uni-osnabrueck.de.
[16] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, (Oxford University Press, Eynsham, 1985), with computational assistance from J. G. Thackray. · Zbl 0568.20001
[17] Dokuchaev, M., Juriaans, S. O. and Milies, C. Polcino, Integral group rings of Frobenius groups and the conjectures of H. J. Zassenhaus, Comm. Algebra25(7) (1997) 2311-2325. · Zbl 0881.16020
[18] Feit, W., The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens(Nice, 1970), Tome 1 (Gauthier-Villars, Paris, 1971), pp. 55-93. · Zbl 0344.20008
[19] Gent, I. P., Jefferson, C. and Miguel, I., MINION: A fast, scalable, constraint solver, in Proc. 17th European Conf. Artificial Intelligence (ECAI 2006) (IOS Press, 2006), pp. 98-102.
[20] Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl.12 (2013) 1350016. · Zbl 1280.16035
[21] S. Gutsche, M. Horn and C. Söger, Normaliz Interface, GAP wrapper for Normaliz, Version 0.9.8 (2016), (GAP package), https://gap-packages.github.io/NormalizInterface.
[22] Hertweck, M., On the torsion units of some integral group rings, Algebra Colloq.13(2) (2006) 329-348. · Zbl 1097.16009
[23] M. Hertweck, Partial augmentations and Brauer character values of torsion units in group rings, preprint (2006), arXiv:math.RA/0612429v2.
[24] Hertweck, M., The orders of torsion units in integral group rings of finite solvable groups, Comm. Algebra36 (2008) 3585-3588. · Zbl 1157.16010
[25] Hertweck, M., Zassenhaus Conjecture for \(A_6\), Proc. Indian Acad. Sci. (Math. Sci)118(2) (2008) 189-195. · Zbl 1149.16027
[26] Herzog, M., On finite simple groups divisible by three primes only, J. Algebra10 (1968) 383-388. · Zbl 0167.29101
[27] G. Higman, Units in group rings, D. Phil thesis, Oxford University (1940). · JFM 66.0104.04
[28] E. Jespers, W. Kimmerle, G. Nebe and Z. Marciciak, Miniworkshop Arithmetik von Gruppenringen, Vol. 4, Oberwolfach Reports No. 55, EMS, Zürich (2007), pp. 3149-3179.
[29] Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, Contemp. Math.420 (2006) 215-228. · Zbl 1126.20001
[30] W. Kimmerle and A. Konovalov, On the prime graph of the unit group of integral group rings of finite groups II, Stuttgarter Mathematische Berichte 2012-018, http://www.mathematik.uni-stuttgart.de/fachbereich/math-berichte/listen.jsp. · Zbl 1391.16042
[31] Luthar, I. S. and Passi, I. B. S., Zassenhaus conjecture for \(\text{A}_5\), J. Nat. Acad. Math. India99 (1989) 1-5. · Zbl 0678.16008
[32] Luthar, I. S. and Trama, P., Zassenhaus conjecture for \(S_5\), Comm. Algebra19(8) (1991) 2353-2362. · Zbl 0729.16021
[33] L. Margolis, Torsionseinheiten in ganzzahligen Gruppenringen nicht auflösbarer Gruppen. Ph.D. thesis, University of Stuttgart, Stuttgart (2015).
[34] Marciniak, Z. S., Ritter, J., Sehgal, S. K. and Weiss, A., Torsion units in integral group rings of some metabelian groups, II, J. Number Theory25 (1987) 340-352. · Zbl 0611.16007
[35] Sandling, R., Graham Higman’s thesis Units in Group Rings in Integral Representations and Applications, ed. Roggenkamp, K. W., , Vol. 882 (1981), pp. 93-116. · Zbl 0468.16013
[36] Schimpf, J. and Shen, K., ECLiPSe — from LP to CLP, Theory Pract. Logic Program.12(1-2) (2012) 127-156. · Zbl 1244.68020
[37] Sehgal, S. K., Units in Integral Group Rings, (Longman Scientific & Technical, Essex, 1993). · Zbl 0803.16022
[38] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.8.4 (2016), http://www.gap-system.org.
[39] R. Wagner, Zassenhausvermutung über die Gruppen \(\text{PSL}(2, p)\), Diplomarbeit, Universität Stuttgart (1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.