×

Timing problems and algorithms: time decisions for sequences of activities. (English) Zbl 1390.90486

Summary: Timing problems involve the choice of task execution dates within a predetermined processing sequence, and under various additional constraints or objectives such as time windows, time-dependent costs, or flexible processing times, among others. Their efficient resolution is critical in branch and bound and neighborhood search methods for vehicle routing, project and machine scheduling, as well as in various applications in network optimization, resource allocation, and statistical inference. Timing-related problems have been studied for years, yet research on this subject suffers from a lack of consensus, and most knowledge is scattered among operations research and applied mathematics domains. This article introduces a classification of timing problems and features, as well as a unifying multidisciplinary analysis of timing algorithms. In relation to frequent application cases within branching schemes or neighborhood searches, the efficient resolution of series of similar timing subproblems is also analyzed. A dedicated formalism of reoptimization “by concatenation” is introduced to that extent. The knowledge developed through this analysis is valuable for modeling and algorithmic design, for a wide range of combinatorial optimization problems with time characteristics, including rich vehicle routing settings and emerging nonregular scheduling applications, among others.

MSC:

90C27 Combinatorial optimization
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
90B06 Transportation, logistics and supply chain management
90B35 Deterministic scheduling theory in operations research
90B10 Deterministic network models in operations research
Full Text: DOI

References:

[1] R.K.Ahuja, D.S.Hochbaum, and J.B.Orlin, Solving the convex cost integer dual network flow problem, Manage Sci49 (2003), 950-964. · Zbl 1232.90317
[2] R.K.Ahuja and J.B.Orlin, A fast scaling algorithm for minimizing separable convex functions subject to chain constraints, Oper Res49 (2001), 784-789. · Zbl 1163.90695
[3] B.Alidaee and N.K.Womer, Scheduling with time dependent processing times: Review and extensions, J Oper Res Soc50 (2009), 711-720. · Zbl 1054.90542
[4] M.Ayer, H.D.Brunk, G.M.Ewing, W.T.Reid, and E.Silverman, An empirical distribution function for sampling with incomplete information, Ann Math Stat26 (1955), 641-647. · Zbl 0066.38502
[5] K.R.Baker and G.D.Scudder, Sequencing with earliness and tardiness penalties: A review, Oper Res38 (1990), 22-36. · Zbl 0699.90052
[6] N.Balakrishnan, Simple heuristics for the vehicle routeing problem with soft time windows, J Oper Res Soc44 (1993), 279-287. · Zbl 0771.90033
[7] R.Baldacci, A.Mingozzi, and R.Roberti, New route relaxation and pricing strategies for the vehicle routing problem, Oper Res59 (2011), 1269-1283. · Zbl 1233.90059
[8] R.E.Barlow, D.J.Bartholomew, J.M.Bremner, and H.D.Brunk, Statistical inference under order restrictions: The theory and application of isotonic regression, Wiley, New York, 1972. · Zbl 0246.62038
[9] M.Bartusch, R.H.Möhring, and F.J.Radermacher, Scheduling project networks with resource constraints and time windows, Ann Oper Res16 (1988), 199-240. · Zbl 0693.90047
[10] J.C.Bean, J.R.Birge, and R.L.Smith, Aggregation in dynamic programming, Oper Res35 (1987), 215-220. · Zbl 0634.90091
[11] J.E.Beasley, Adapting the savings algorithm for varying inter‐customer travel times, Omega9 (1981), 658-659.
[12] G.Berbeglia, J.‐F.Cordeau, and G.Laporte, A hybrid tabu search and constraint programming algorithm for the dynamic dial‐a‐ride problem, INFORMS J Comput, 24 (2012), 343-355. · Zbl 1460.90083
[13] D.P.Bertsekas, A.Nedi, and A.E.Ozdaglar, Nonlinear programming. Athena Scientific, Nashua, NH, 2003.
[14] M.J.Best and N.Chakravarti, Active set algorithms for isotonic regression, a unifying framework, Math Program47 (1990), 425-439. · Zbl 0715.90085
[15] M.JBest, N.Chakravarti, and V.A.Ubhaya, Minimizing separable convex functions subject to simple chain constraints, SIAM J Optim10 (2000), 658-672. · Zbl 0955.90100
[16] L.Bianco, A.Mingozzi, and S.Ricciardelli, The traveling salesman problem with cumulative costs, Networks23 (1993), 81-91. · Zbl 0821.90121
[17] A.Blum, P.Chalasani, D.Coppersmith, B.Pulleyblank, P.Raghavan, and M.Sudan, The minimum latency problem, Proc 26th Annu ACM Symp Theory Comput, ACM, New York, 1994, pp. 163-171. · Zbl 1345.90073
[18] O.Bräysy and M.Gendreau, Vehicle routing problem with time windows, Part II: Metaheuristics, Transp Sci39 (2005), 119-139.
[19] O.Bräysy and M.Gendreau, Vehicle routing problem with time windows, Part I: Route construction and local search algorithms, Transp Sci39 (2005), 104-118.
[20] P.Brucker, T.Hilbig, and J.Hurink, A branch and bound algorithm for a single‐machine scheduling problem with positive and negative time‐lags, Discr Appl Math94 (1999), 77-99. · Zbl 0932.68006
[21] H.D.Brunk, Maximum likelihood estimates of monotone parameters, Ann Math Stat26 (1955), 607-616. · Zbl 0066.38503
[22] A.M.Campbell and M.Savelsbergh, Efficient insertion heuristics for vehicle routing and scheduling problems, Transp Sci38 (2004), 369-378.
[23] N.Chakravarti, Isotonic median regression: A linear programming approach, Math Oper Res14 (1989), 303-308. · Zbl 0677.90041
[24] A.Charnes and W.W.Cooper, The theory of search: Optimum distribution of search effort, Manage Sci5 (1958), 44-50. · Zbl 0995.90543
[25] TCheng, A concise survey of scheduling with time‐dependent processing times, Eur J Oper Res152 (2004), 1-13. · Zbl 1030.90023
[26] P.Chrétienne and F.Sourd, PERT scheduling with convex cost functions, Theoret Comput Sci292 (2003), 145-164. · Zbl 1059.90066
[27] M.Christiansen and K.Fagerholt, Robust ship scheduling with multiple time windows, Naval Res Logistics, 49 (2002), 611-625. · Zbl 1007.90504
[28] K.L.Cooke and E.Halsey, The shortest route through a network with time‐dependent internodal transit times, J Math Anal Appl14 (1996), 493-498. · Zbl 0173.47601
[29] J.‐F.Cordeau and G.Laporte, A tabu search heuristic for the static multi‐vehicle dial‐a‐ride problem, Transp Res Part B Methodol37 (2003), 579-594.
[30] J.‐F.Cordeau, G.Laporte, and A.Mercier, A unified tabu search heuristic for vehicle routing problems with time windows, J Oper Res Soc52 (2001), 928-936. · Zbl 1181.90034
[31] J.‐F.Cordeau, G.Laporte, and A.Mercier, Improved tabu search algorithm for the handling of route duration constraints in vehicle routing problems with time windows, J Oper Res Soc55 (2004), 542- 546. · Zbl 1060.90019
[32] R.Cordone, A note on time windows constraints in routing problems, Technical report, Department of Electronics and Information, Polytechnic of Milan, 2000.
[33] G.B.Dantzig, A control problem of Bellman. Manage Sci17 (1971), 542-546. · Zbl 0217.17701
[34] J.S.Davis and J.J.Kanet, Single‐machine scheduling with early and tardy completion costs, Naval Res Logistics40 (1993), 85-101. · Zbl 0769.90048
[35] R.Dechter, I.Meiri, and J.Pearl, Temporal constraint networks, Artif Intell49 (1991), 61-95. · Zbl 0737.68070
[36] E.Demir, T.Bektas, and G.Laporte, An adaptive large neighborhood search heuristic for the pollution‐routing problem, Eur J Oper Res223 (2012), 346-359. · Zbl 1292.90045
[37] G.Desaulniers, J.Desrosiers, I.Ioachim, M.M.Solomon, F.Soumis, and D.Villeneuve, “A unified framework for deterministic time constrained vehicle routing and crew scheduling problems,”Fleet management and logistics, T.G.Crainic and (ed.)G.Laporte (ed.) (Editors), Kluwer Academic Publishers, Boston, MA, 1998, pp. 129-154.
[38] G.Desaulniers (ed.), J.Desrosiers, and (ed.)M.M.Solomon (ed.) (Editors), Column generation, Springer, New York, 2005. · Zbl 1084.90002
[39] G.Desaulniers and D.Villeneuve, The shortest path problem with time windows and linear waiting costs, Transp Sci34 (2000), 312-319. · Zbl 0991.90560
[40] M.Desrochers, J.Desrosiers, and M.Solomon, A new optimization algorithm for the vehicle routing problem with time windows, Oper Res40 (1992), 342-354. · Zbl 0749.90025
[41] J.Desrosiers, Y.Dumas, M.M.Solomon, and F.Soumis, “Time constrained routing and scheduling,”Network routing, M.Ball (ed.), T. L.Magnanti (ed.), C.L.Monma, and (ed.)G.L.Nemhauser (ed.) (Editors), North‐Holland, Amsterdam, 1995, pp. 35-139. · Zbl 0861.90052
[42] M.Desrochers, J.K.Lenstra, and M.W.P.Savelsbergh, A classification scheme for vehicle routing and scheduling problems, Eur J Oper Res46 (1990), 322-332. · Zbl 0699.90053
[43] A.Donati, R.Montemanni, N.Casagrande, A.E.Rizzoli, and L.M.Gambardella, Time dependent vehicle routing problem with a multi ant colony system, Eur J Oper Res185 (2008), 1174-1191. · Zbl 1146.90328
[44] S.E.Dreyfus, An appraisal of some shortest‐path algorithms, Oper Res17 (1969), 395-412. · Zbl 0172.44202
[45] C.Duhamel, Un Cadre Formel pour les Méthodes par Amélioration Itérative ‐ Application à deux problèmes d’Optimisation dans les réseaux, PhD thesis, Université Blaise Pascal, Clermont‐Ferrand, 2001.
[46] Y.Dumas, F.Soumis, and J.Desrosiers, Optimizing the schedule for a fixed vehicle path with convex inconvenience costs, Transp Sci24 (1990), 145-152. · Zbl 0715.90066
[47] M.E.Dyer and J.Walker, An algorithm for a separable integer programming problem with cumulatively bounded variables, Discr Appl Math16 (1987), 135-149. · Zbl 0624.90071
[48] I.Elhallaoui, D.Villeneuve, F.Soumis, and G. Desaulniers. Dynamic aggregation of set‐partitioning constraints in column generation, Oper Res53 (2005), 632-645. · Zbl 1165.90604
[49] O.Ergun and J.Orlin, Fast neighborhood search for the single machine total weighted tardiness problem, Oper Res Lett34 (2006), 41-45. · Zbl 1080.90045
[50] E.Erkut and J.Zhang, The maximum collection problem with time‐dependent rewards, Naval Res Logistics43 (1996), 749-763. · Zbl 0864.90041
[51] H.Everett, Generalized Lagrange multiplier method for solving problems of optimum allocation of resources, Oper Res11 (1963), 399-417. · Zbl 0113.14202
[52] D.Feillet, P.Dejax, and M.Gendreau, Traveling salesman problems with profits, Transp Sci39 (2005), 188-205.
[53] G.Feng and H.C.Lau, Efficient algorithms for machine scheduling problems with earliness and tardiness penalties, Ann Oper Res159 (2007), 83-95. · Zbl 1156.90362
[54] M.Firat and G.J.Woeginger, Analysis of the dial‐a‐ride problem of Hunsaker and Savelsbergh, Oper Res Lett39 (2011), 32-35. · Zbl 1208.90017
[55] M.Fischetti, G.Laporte, and S.Martello, The delivery man problem and cumulative matroids, Oper Res41 (1993), 1055-1064. · Zbl 0791.90062
[56] B.Fleischmann, M.Gietz, and S.Gnutzmann, Time‐varying travel times in vehicle routing, Transp Sci38 (2004), 160-173.
[57] A.Frangioni and A.Manca, A computational study of cost reoptimization for min‐cost flow problems, INFORMS J Comput18 (2006), 61-70. · Zbl 1241.90158
[58] G.N.Frederickson and D.B.Johnson, The complexity of selection and ranking in X + Y and matrices with sorted columns, J Comput Syst Sci24 (1982), 197-208. · Zbl 0478.68062
[59] M.L.Fredman, On computing the length of longest increasing subsequences, Discr Math11 (1975), 29-35. · Zbl 0312.68027
[60] M.R.Garey, R.E.Tarjan, and G.T.Wilfong, One‐processor scheduling with symmetric earliness and tardiness penalties, Math Oper Res13 (1988), 330-348. · Zbl 0671.90033
[61] M.Gendreau and C.D.Tarantilis, Solving large‐scale vehicle routing problems with time windows: The state‐of‐the‐art, Technical report, CIRRELT, 2010.
[62] B.Giffler and G.L.Thompson, Algorithms for solving production‐scheduling problems, Oper Res8 (1960), 487-503. · Zbl 0248.90022
[63] S.Goto and A.Sangiovanni‐Vincentelli, A new shortest path updating algorithm, Networks8 (1978), 341-372. · Zbl 0392.94022
[64] R.L.Graham, E.L.Lawler, J.K.Lenstra, and A.H.GRinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann Discr Math5 (1979), 287-326. · Zbl 0411.90044
[65] S.J.Grotzinger and C.Witzgall, Projections onto order simplexes, Appl Math Optim270 (1984), 247-270. · Zbl 0577.65049
[66] T.Gschwind and S.Irnich, Effective handling of dynamic time windows and synchronization with precedences for exact vehicle routing, Technical report, Johannes Gutenberg University, Mainz, Germany, 2012.
[67] J.Halpern, Shortest route with time dependent length of edges and limited delay possibilities in nodes, Zeitschrift für Oper Res21 (1977), 117-124. · Zbl 0366.90116
[68] R.F.Hartl, G.Hasle, and G.K.Janssens, Special issue on rich vehicle routing problems, Central Eur J Oper Res14 (2006), 103-104. · Zbl 1203.90007
[69] H.Hashimoto, Studies on local search‐based approaches for vehicle routing and scheduling problems, PhD thesis, Kyoto University, 2008.
[70] H.Hashimoto, T.Ibaraki, S.Imahori, and M.Yagiura, The vehicle routing problem with flexible time windows and traveling times, Discr Appl Math, 154 (2006), 2271-2290. · Zbl 1130.90053
[71] H.Hashimoto, M.Yagiura, S.Imahori, and T.Ibaraki, Recent progress of local search in handling the time window constraints of the vehicle routing problem, 4OR8 (2010), 221-238. · Zbl 1201.90076
[72] H.Hashimoto, M.Yagiura, and T.Ibaraki, An iterated local search algorithm for the time‐dependent vehicle routing problem with time windows, Discr Optim5 (2008), 434-456. · Zbl 1169.90326
[73] D.Haugland and S.C.Ho, “Feasibility testing for dial‐a‐ride problems,”Algorithmic aspects in information and management, vol. 6124 of LNCSB.Chen (ed.) (Editor), Springer, Berlin, 2010, pp. 170-179. · Zbl 1286.90026
[74] Y.Hendel and F.Sourd, Efficient neighborhood search for the one‐machine earliness‐tardiness scheduling problem, Eur J Oper Res173 (2006), 108-119. · Zbl 1125.90017
[75] Y.Hendel and F.Sourd, An improved earliness‐tardiness timing algorithm, Comput Oper Res34 (2007), 2931-2938. · Zbl 1185.90077
[76] D.Hochbaum, Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations, Eur J Oper Res140 (2002), 291-321. · Zbl 1001.90050
[77] D.S.Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear optimization problems, Math Oper Res19 (1994), 390-409. · Zbl 0820.90082
[78] D.S.Hochbaum and S.‐P.Hong, About strongly polynomial time algorithms for quadratic optimization over submodular constraints, Math Program69 (1995), 269-309. · Zbl 0844.90061
[79] D.S.Hochbaum and J.G.Shanthikumar, Convex separable optimization is not much harder than linear optimization, J ACM, 37 (1990), 843-862. · Zbl 0721.90060
[80] J.A.Hoogeveen and S.L.Van DeVelde, A branch‐and‐bound algorithm for single‐machine earliness‐tardiness scheduling with idle time, INFORMS J Comput8 (1996), 402-412. · Zbl 0884.90102
[81] H.H.Hoos and T.Stützle, Stochastic local search: Foundations and applications, Morgan Kaufmann, San Francisco, 2005. · Zbl 1126.68032
[82] B.Hunsaker and M.W.P.Savelsbergh, Efficient feasibility testing for dial‐a‐ride problems, Oper Res Lett30 (2002), 169-173. · Zbl 1010.90006
[83] J.Hurink and J.Keuchel, Local search algorithms for a single‐machine scheduling problem with positive and negative time‐lags, Discr Appl Math112 (2001), 179-197. · Zbl 1010.90023
[84] L.M.Hvattum, I.Norstad, K.Fagerholt, and G.Laporte, Analysis of an exact algorithm for the vessel speed optimization problem, Networks62 (2013), 132-135. · Zbl 1338.68107
[85] T.Ibaraki, S.Imahori, M.Kubo, T.Masuda, T.Uno, and M.Yagiura, Effective local search algorithms for routing and scheduling problems with general time‐window constraints, Transp Sci39 (2005), 206-232.
[86] T.Ibaraki, S.Imahori, K.Nonobe, K.Sobue, T.Uno, and M.Yagiura, An iterated local search algorithm for the vehicle routing problem with convex time penalty functions, Discr Appl Math156 (2008), 2050-2069. · Zbl 1153.90446
[87] T.Ibaraki and N.Katoh, Resource allocation problems: Algorithmic approaches, MIT Press, Boston, MA, 1988. · Zbl 0786.90067
[88] S.Ichoua, M.Gendreau, and J.Y.Potvin, Vehicle dispatching with time‐dependent travel times, Eur J Oper Res144 (2003), 379-396. · Zbl 1012.90003
[89] I.Ioachim, S.Gélinas, F.Soumis, and J.Desrosiers, A dynamic programming algorithm for the shortest path problem with time windows and linear node costs, Networks31 (1998), 193-204. · Zbl 1002.90084
[90] S.Irnich, A unified modeling and solution framework for vehicle routing and local search‐based metaheuristics, INFORMS J Comput20 (2008), 270-287. · Zbl 1243.90225
[91] S.Irnich, Resource extension functions: Properties, inversion, and generalization to segments, OR Spectrum30 (2008), 113-148. · Zbl 1133.90309
[92] N.Karmarkar, A new polynomial‐time algorithm for linear programming, Combinatorica, 4 (1984), 373-395. · Zbl 0557.90065
[93] W.Karush, A general algorithm for the optimal distribution of effort, Manage Sci, 9 (1962), 50-72. · Zbl 0995.90588
[94] S.Kedad‐Sidhoum and F.Sourd, Fast neighborhood search for the single machine earliness‐tardiness scheduling problem, Comput Oper Res37 (2010), 1464-1471. · Zbl 1183.90175
[95] J.E.Kelley and M.R.Walker, Critical‐path planning and scheduling, Proc East Jt Comput Conf, ACM Press, New York, 1959, pp. 160-173.
[96] L.G.Khachiyan, A polynomial algorithm in linear programming, Sov Math Dokl20 (1979), 191-194. · Zbl 0409.90079
[97] G.A.P.Kindervater and M.W.P.Savelsbergh, “Vehicle routing: Handling edge exchanges,”Local search in combinatorial optimization, E.H.L.Aarts and (ed.)J.K.Lenstra (ed.) (Editors), Princeton University Press, Princeton, 1997, pp. 337-360. · Zbl 0887.90060
[98] M.S.Kodialam and H.Luss, Algorithms for separable nonlinear resource allocation problems, Oper Res46 (1998), 272-284. · Zbl 0979.90109
[99] A.L.Kok, E.W.Hans, and J.M.J.Schutten, Vehicle routing under time‐dependent travel times: The impact of congestion avoidance, Technical report, University of Twente, 2009.
[100] Y.A.Koskosidis, W.B.Powell, and M.M.Solomon, An optimization‐based heuristic for vehicle routing and scheduling with soft time window constraints, Transp Sci26 (1992), 69-85. · Zbl 0762.90022
[101] C.Y.Lee and J.Y.Choi, A genetic algorithm for job sequencing problems with distinct due dates and general early‐tardy penalty weights, Comput Oper Res22 (1995), 857-869. · Zbl 0838.90066
[102] H.Luss and S.K.Gupta, Allocation of effort resources among competing activities, Oper Res23 (1975), 360-366. · Zbl 0298.90015
[103] C.Malandraki and M.S.Daskin, Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms, Transp Sci26 (1992), 185-200. · Zbl 0758.90029
[104] C.Malandraki and R.B.Dial, A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem, Eur J Oper Res90 (1996), 45-55. · Zbl 0916.90262
[105] D.G.Malcolm, J.H.Roseboom, C.E.Clark, and W.Fazar, Application of a technique for research and development program evaluation, Oper Res7 (1959), 646-669. · Zbl 1255.90070
[106] E.Miller‐Hooks and B.Yang, Updating paths in time‐varying networks given arc weight changes, Transp Sci39 (2005), 451-464.
[107] L.G.Mitten, Sequencing n jobs on two machines with arbitrary time lags, Manage Sci5 (1959), 293-298. · Zbl 0995.90539
[108] Y.Nagata, Effective memetic algorithm for the vehicle routing problem with time windows: Edge assembly crossover for the VRPTW, Proc 7th Metaheuristics Int Conf, Montreal, Canada (on CD‐ROM), 2007.
[109] Y.Nagata, O.Bräysy, and W.Dullaert, A penalty‐based edge assembly memetic algorithm for the vehicle routing problem with time windows, Comput Oper Res37 (2010), 724-737. · Zbl 1175.90046
[110] S.U.Ngueveu, C.Prins, and R.Wolfler Calvo, An effective memetic algorithm for the cumulative capacitated vehicle routing problem, Comput Oper Res37 (2010), 1877-1885. · Zbl 1188.90037
[111] I.Norstad, K.Fagerholt, and G.Laporte, Tramp ship routing and scheduling with speed optimization, Transp Res Part C Emerg Technol19 (2011), 853-865.
[112] I.Or, Traveling salesman‐type combinatorial problems and their relation to the logistics of regional blood banking, PhD thesis, Northwestern University, Evanston, IL, 1976.
[113] A.Padakandla and R.Sundaresan, Power minimization for CDMA under colored noise, IEEE Trans Commun57 (2009), 3103-3112.
[114] S.Pallottino, A new algorithm for reoptimizing shortest paths when the arc costs change, Oper Res Lett31 (2003), 149-160. · Zbl 1041.90062
[115] Y.Pan and L.Shi, Dual constrained single machine sequencing to minimize total weighted completion time, IEEE Trans Automat Sci Eng2 (2005), 344-357.
[116] P.M.Pardalos and G.Xue, Algorithms for a class of isotonic regression problems, Algorithmica23 (1999), 211-222. · Zbl 0921.68045
[117] P.M.Pardalos, G.‐L.Xue, and L.Yong, Efficient computation of an isotonic median regression, Appl Math Lett8 (1995), 67-70. · Zbl 0820.62029
[118] S.N.Parragh, J.‐F.Cordeau, K.F.Doerner, and R.F.Hartl, Models and algorithms for the heterogeneous dial‐a‐ride problem with driver‐related constraints, OR Spectrum34 (2012), 593-633. · Zbl 1244.90147
[119] M.Patriksson, A survey on the continuous nonlinear resource allocation problem, Eur J Oper Res185 (2008), 1-46. · Zbl 1146.90493
[120] D.W.Pentico, The assortment problem: A survey, Eur J Oper Res190 (2008), 295-309.
[121] M.Pinedo, Scheduling: Theory, algorithms, and systems, Prentice Hall, Englewood Cliffs, New Jersey, 2008. · Zbl 1155.90008
[122] C.N.Potts and J.D.Whitehead, Heuristics for a coupled‐operation scheduling problem, J Oper Res Soc58 (2007), 1375-1388. · Zbl 1177.90179
[123] J.‐Y.Potvin and J.‐M.Rousseau, An exchange heuristic for routeing problems with time windows, J Oper Res Soc46 (1995), 1433-1446. · Zbl 0843.90043
[124] E.Prescott‐Gagnon, G.Desaulniers, and L.M.Rousseau, A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows, Networks54 (2009), 190-204. · Zbl 1206.90016
[125] G.Righini and M.Salani, Symmetry helps: Bounded bi‐directional dynamic programming for the elementary shortest path problem with resource constraints, Discr Optim3 (2006), 255-273. · Zbl 1149.90167
[126] T.Robertson, F.T.Wright, and R.L.Dykstra, Order restricted statistical inference, Wiley series in probability and statistics, Wiley, New York, 1988. · Zbl 0645.62028
[127] R.T.Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970. · Zbl 0193.18401
[128] B.Roy, Contribution de la théorie des graphes à l’étude de certains problèmes linéaires, Comptes rendus de l’académie des sciences de Paris248 (1959), 2437-2439.
[129] B.Roy, Graphes et ordonnancement, Revue Française de Recherche Opérationnelle25 (1962), 323-333.
[130] L.Sanathanan, On an allocation problem with multistage constraints, Oper Res19 (1971), 1647-1663. · Zbl 0227.90041
[131] M.W.P.Savelsbergh, Local search in routing problems with time windows, Ann Oper Res4 (1985), 285-305.
[132] M.W.P.Savelsbergh, The vehicle routing problem with time windows: Minimizing route duration, ORSA J Comput4 (1992), 146-154. · Zbl 0780.90105
[133] T.R.Sexton and L.D.Bodin, Optimizing single vehicle many‐to‐many operations with desired delivery times: I. Scheduling, Transp Sci19 (1985), 378-410. · Zbl 0608.90043
[134] T.R.Sexton and L.D.Bodin, Optimizing single vehicle many‐to‐many operations with desired delivery times: II. Routing, Transp Sci19 (1985), 411-435. · Zbl 0618.90042
[135] F.Sourd, Optimal timing of a sequence of tasks with general completion costs, Eur J Oper Res165 (2005), 82-96. · Zbl 1112.90340
[136] F.Sourd and S.Kedad‐Sidhoum, The one‐machine problem with earliness and tardiness penalties, J Scheduling6 (2003), 533-549. · Zbl 1154.90490
[137] K.S.Srikantan, A problem in optimum allocation, Oper Res11 (1963), 265-273. · Zbl 0114.12002
[138] W.Szwarc and S.K.Mukhopadhyay, Optimal timing schedules in earliness‐tardiness single machine sequencing, Naval Res Logistics42 (1995), 1109-1114. · Zbl 0841.90078
[139] M.Tagmouti, M.Gendreau, and J.‐Y.Potvin, Arc routing problems with time‐dependent service costs, Eur J Oper Res181 (2007), 30-39. · Zbl 1121.90031
[140] E.Taillard, P.Badeau, M.Gendreau, F.Guertin, and J.‐Y.Potvin, A tabu search heuristic for the vehicle routing problem with soft time windows, Transp Sci31 (1997), 170-186. · Zbl 0886.90070
[141] F.B.Talbot, Resource‐constrained project scheduling with time‐resource tradeoffs: The nonpreemptive case, Manage Sci28 (1982), 1197-1210. · Zbl 0493.90042
[142] A.Tamir, Efficient algorithms for a selection problem with nested constraints and its application to a\vadjust{\vfill\pagebreak }
production‐sales planning model, SIAM J Control Optim18 (1980), 282-287. · Zbl 0434.90067
[143] J.Tang, Y.Kong, H.Lau, and A.W.H.Ip, A note on “Efficient feasibility testing for dial‐a‐ride problems”, Oper Res Lett38 (2010), 405-407. · Zbl 1202.90079
[144] F.Tricoire, M.Romauch, K.F.Doerner, and R.F.Hartl, Heuristics for the multi‐period orienteering problem with multiple time windows, Comput Oper Res37 (2010), 351-367. · Zbl 1175.90212
[145] T.VanWoensel, L.Kerbache, H.Peremans, and N.Vandaele, Vehicle routing with dynamic travel times: A queueing approach, Eur J Oper Res186 (2008), 990-1007. · Zbl 1146.90426
[146] T.Vidal, T.G.Crainic, M.Gendreau, and C.Prins, Heuristics for multi‐attribute vehicle routing problems: A survey and synthesis, Eur J Oper Res231 (2013), 1-21. · Zbl 1317.90006
[147] T.Vidal, T.G.Crainic, M.Gendreau, and C.Prins, A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time‐windows, Comput Oper Res40 (2013), 475-489. · Zbl 1349.90137
[148] T.Vidal, T.G.Crainic, M.Gendreau, and C.Prins, Time‐window relaxations in vehicle routing heuristics, Technical report, CIRRELT, Montréal, 2013.
[149] T.Vidal, P.Jaillet, and N.Maculan, A decomposition algorithm for nested resource allocation problems, Technical report, MIT, Cambridge, 2014.
[150] C.Walshaw, A multilevel approach to the travelling salesman problem, Oper Res50 (2002), 862-877. · Zbl 1163.90777
[151] G.Wan and B.P.‐C.Yen, Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties, Eur J Oper Res142 (2002), 271-281. · Zbl 1082.90531
[152] C.A.Yano and Y.‐D.Kim, Algorithms for a class of single‐machine weighted tardiness and earliness problems, Eur J Oper Res52 (1991), 167-178. · Zbl 0725.90041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.