×

Instability of supersymmetric microstate geometries. (English) Zbl 1390.83238

Summary: We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an “evanescent ergosurface”: a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
83E50 Supergravity

References:

[1] Lunin, O.; Mathur, SD, AdS/CFT duality and the black hole information paradox, Nucl. Phys., B 623, 342, (2002) · Zbl 1036.83503 · doi:10.1016/S0550-3213(01)00620-4
[2] Maldacena, JM; Maoz, L., Desingularization by rotation, JHEP, 12, 055, (2002) · doi:10.1088/1126-6708/2002/12/055
[3] Balasubramanian, V.; Boer, J.; Keski-Vakkuri, E.; Ross, SF, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev., D 64, 064011, (2001)
[4] O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
[5] Lunin, O., Adding momentum to D1-D5 system, JHEP, 04, 054, (2004) · doi:10.1088/1126-6708/2004/04/054
[6] Giusto, S.; Mathur, SD; Saxena, A., Dual geometries for a set of 3-charge microstates, Nucl. Phys., B 701, 357, (2004) · Zbl 1124.81306 · doi:10.1016/j.nuclphysb.2004.09.001
[7] Giusto, S.; Mathur, SD; Saxena, A., 3-charge geometries and their CFT duals, Nucl. Phys., B 710, 425, (2005) · Zbl 1115.81385 · doi:10.1016/j.nuclphysb.2005.01.009
[8] Giusto, S.; Mathur, SD, Geometry of D1-D5-P bound states, Nucl. Phys., B 729, 203, (2005) · Zbl 1138.83362 · doi:10.1016/j.nuclphysb.2005.09.037
[9] Bena, I.; Warner, NP, Bubbling supertubes and foaming black holes, Phys. Rev., D 74, 066001, (2006)
[10] Berglund, P.; Gimon, EG; Levi, TS, Supergravity microstates for BPS black holes and black rings, JHEP, 06, 007, (2006) · doi:10.1088/1126-6708/2006/06/007
[11] Gibbons, GW; Warner, NP, Global structure of five-dimensional fuzzballs, Class. Quant. Grav., 31, 025016, (2014) · Zbl 1292.83031 · doi:10.1088/0264-9381/31/2/025016
[12] Jejjala, V.; Madden, O.; Ross, SF; Titchener, G., Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev., D 71, 124030, (2005)
[13] Cardoso, V.; Dias, ÓJC; Hovdebo, JL; Myers, RC, Instability of non-supersymmetric smooth geometries, Phys. Rev., D 73, 064031, (2006)
[14] Breckenridge, JC; Myers, RC; Peet, AW; Vafa, C., D-branes and spinning black holes, Phys. Lett., B 391, 93, (1997) · Zbl 0956.83064 · doi:10.1016/S0370-2693(96)01460-8
[15] Elvang, H.; Emparan, R.; Mateos, D.; Reall, HS, A supersymmetric black ring, Phys. Rev. Lett., 93, 211302, (2004) · doi:10.1103/PhysRevLett.93.211302
[16] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton U.S.A. (1993) [INSPIRE]. · Zbl 0827.53055
[17] M. Dafermos and G. Holzegel, Dynamic instability of solitons in 4+1 dimensional gravity with negative cosmological constant, http://www.dpmms.cam.ac.uk/ md384/ADSinstability.pdf (2006). · Zbl 1106.83014
[18] Bizon, P.; Rostworowski, A., On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett., 107, 031102, (2011) · doi:10.1103/PhysRevLett.107.031102
[19] Cardoso, V.; Dias, ÓJC; Myers, RC, On the gravitational stability of D1-D5-P black holes, Phys. Rev., D 76, 105015, (2007)
[20] Sbierski, J., Characterisation of the energy of gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. Part. Diff. Eq., 8, 1379, (2015) · Zbl 1343.35229
[21] G. Holzegel and J. Smulevici, Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes, arXiv:1303.5944 [INSPIRE]. · Zbl 1300.83030
[22] Keir, J., Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars, Class. Quant. Grav., 33, 135009, (2016) · Zbl 1346.83013 · doi:10.1088/0264-9381/33/13/135009
[23] John, F., Blow-up for quasi-linear wave equations in three space dimensions, Commun. Pure Appl. Math., 34, 29, (1981) · Zbl 0453.35060 · doi:10.1002/cpa.3160340103
[24] S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear systems of partial differential equations in applied mathematics. Part 1, American Mathematical Society, Providence U.S.A., Lect. Appl. Math.23 (1986) 293. · Zbl 0599.35105
[25] H. Lindblad and I. Rodnianski, The global stability of the Minkowski space-time in harmonic gauge, math.AP/0411109 [INSPIRE]. · Zbl 1192.53066
[26] Lindblad, H., Global solutions of quasilinear wave equations, Amer. J. Math., 130, 115, (2008) · Zbl 1144.35035 · doi:10.1353/ajm.2008.0009
[27] Dias, ÓJC; Horowitz, GT; Marolf, D.; Santos, JE, On the nonlinear stability of asymptotically anti-de Sitter solutions, Class. Quant. Grav., 29, 235019, (2012) · Zbl 1258.83022 · doi:10.1088/0264-9381/29/23/235019
[28] Festuccia, G.; Liu, H., A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett., 2, 221, (2009) · doi:10.1166/asl.2009.1029
[29] Gannot, O., Quasinormal modes for Schwarzschild-AdS black holes: exponential convergence to the real axis, Commun. Math. Phys., 330, 771, (2014) · Zbl 1295.85001 · doi:10.1007/s00220-014-2002-4
[30] Cardoso, V.; Crispino, LCB; Macedo, CFB; Okawa, H.; Pani, P., Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys. Rev., D 90, 044069, (2014)
[31] J. Keir, Wave propagation on microstate geometries, arXiv:1609.01733 [INSPIRE].
[32] Mathur, SD, The fuzzball proposal for black holes: an elementary review, Fortschr. Phys., 53, 793, (2005) · Zbl 1116.83300 · doi:10.1002/prop.200410203
[33] Aretakis, S., Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations I, Commun. Math. Phys., 307, 17, (2011) · Zbl 1229.85002 · doi:10.1007/s00220-011-1254-5
[34] Aretakis, S., Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations II, Annales Henri Poincaré, 12, 1491, (2011) · Zbl 1242.83049 · doi:10.1007/s00023-011-0110-7
[35] Kunduri, HK; Lucietti, J., Supersymmetric black holes with Lens-space topology, Phys. Rev. Lett., 113, 211101, (2014) · doi:10.1103/PhysRevLett.113.211101
[36] Tomizawa, S.; Nozawa, M., Supersymmetric black lenses in five dimensions, Phys. Rev., D 94, 044037, (2016)
[37] Kunduri, HK; Lucietti, J., Black hole non-uniqueness via spacetime topology in five dimensions, JHEP, 10, 082, (2014) · Zbl 1333.83097 · doi:10.1007/JHEP10(2014)082
[38] Giusto, S.; Martucci, L.; Petrini, M.; Russo, R., 6D microstate geometries from 10D structures, Nucl. Phys., B 876, 509, (2013) · Zbl 1284.83161 · doi:10.1016/j.nuclphysb.2013.08.018
[39] I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, arXiv:1607.03908 [INSPIRE].
[40] Gibbons, GW; Kastor, D.; London, LAJ; Townsend, PK; Traschen, JH, Supersymmetric selfgravitating solitons, Nucl. Phys., B 416, 850, (1994) · Zbl 1007.81565 · doi:10.1016/0550-3213(94)90558-4
[41] Niehoff, BE; Reall, HS, Evanescent ergosurfaces and ambipolar hyperkähler metrics, JHEP, 04, 130, (2016) · Zbl 1388.83492 · doi:10.1007/JHEP04(2016)130
[42] Gutowski, JB; Martelli, D.; Reall, HS, All supersymmetric solutions of minimal supergravity in six-dimensions, Class. Quant. Grav., 20, 5049, (2003) · Zbl 1170.83473 · doi:10.1088/0264-9381/20/23/008
[43] R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984) [INSPIRE]. · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[44] M. Dafermos and I. Rodnianski, A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, in Proceedings of the XVI International Congress on Mathematical Physics, P. Exner ed., World Scientific, London U.K. (2009), pp. 421-433 [arXiv:0910.4957] [INSPIRE]. · Zbl 1211.83019
[45] M. Dafermos, G. Holzegel and I. Rodnianski, A scattering theory construction of dynamical vacuum black holes, arXiv:1306.5364 [INSPIRE].
[46] Dafermos, M.; Rodnianski, I., The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., 62, 859, (2009) · Zbl 1169.83008 · doi:10.1002/cpa.20281
[47] Dafermos, M.; Rodnianski, I., Lectures on black holes and linear waves, Clay Math. Proc., 17, 97, (2013) · Zbl 1300.83004
[48] Aretakis, S., Horizon instability of extremal black holes, Adv. Theor. Math. Phys., 19, 507, (2015) · Zbl 1335.83013 · doi:10.4310/ATMP.2015.v19.n3.a1
[49] Lucietti, J.; Reall, HS, Gravitational instability of an extreme Kerr black hole, Phys. Rev., D 86, 104030, (2012)
[50] M. Dafermos and I. Rodnianski, Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: the cases |\(a\)| ≪ M or axisymmetry, arXiv:1010.5132 [INSPIRE]. · Zbl 1347.83002
[51] Chakrabarty, B.; Turton, D.; Virmani, A., Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, JHEP, 11, 063, (2015) · Zbl 1388.83405 · doi:10.1007/JHEP11(2015)063
[52] Ferrari, V.; Mashhoon, B., New approach to the quasinormal modes of a black hole, Phys. Rev., D 30, 295, (1984)
[53] Yang, H.; etal., Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation, Phys. Rev., D 86, 104006, (2012)
[54] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, United States Department of Commerce, National Bureau of Standards (1964). · Zbl 0171.38503
[55] Giusto, S.; Lunin, O.; Mathur, SD; Turton, D., D1-D5-P microstates at the cap, JHEP, 02, 050, (2013) · doi:10.1007/JHEP02(2013)050
[56] Cardoso, V.; Dias, ÓJC; Hartnett, GS; Lehner, L.; Santos, JE, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS, JHEP, 04, 183, (2014) · Zbl 1333.83063 · doi:10.1007/JHEP04(2014)183
[57] O. Lunin and S.D. Mathur, The slowly rotating near extremal D1-D5 system as a ‘hot tube’, Nucl. Phys.B 615 (2001) 285 [hep-th/0107113] [INSPIRE]. · Zbl 0988.81093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.