×

Holographic turbulence in a large number of dimensions. (English) Zbl 1390.81540

Summary: We consider relativistic hydrodynamics in the limit where the number of spatial dimensions is very large. We show that under certain restrictions, the resulting equations of motion simplify significantly. Holographic theories in a large number of dimensions satisfy the aforementioned restrictions and their dynamics are captured by hydrodynamics with a naturally truncated derivative expansion. Using analytic and numerical techniques we analyze two and three-dimensional turbulent flow of such fluids in various regimes and its relation to geometric data.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

References:

[1] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008) · doi:10.1088/1126-6708/2008/02/045
[2] Adams, A.; Chesler, PM; Liu, H., Holographic turbulence, Phys. Rev. Lett., 112, 151602, (2014) · doi:10.1103/PhysRevLett.112.151602
[3] S.R. Green, F. Carrasco and L. Lehner, Holographic Path to the Turbulent Side of Gravity, Phys. Rev.X 4 (2014) 011001 [arXiv:1309.7940] [INSPIRE]. · Zbl 1388.83359
[4] Eling, C.; Oz, Y., The anomalous scaling exponents of turbulence in general dimension from random geometry, JHEP, 09, 150, (2015) · Zbl 1388.83431 · doi:10.1007/JHEP09(2015)150
[5] R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP06 (2013) 009 [arXiv:1302.6382] [INSPIRE]. · Zbl 1342.83152
[6] Emparan, R.; Suzuki, R.; Tanabe, K., Instability of rotating black holes: large D analysis, JHEP, 06, 106, (2014) · Zbl 1333.83075 · doi:10.1007/JHEP06(2014)106
[7] Emparan, R.; Suzuki, R.; Tanabe, K., Decoupling and non-decoupling dynamics of large D black holes, JHEP, 07, 113, (2014) · Zbl 1390.83194 · doi:10.1007/JHEP07(2014)113
[8] R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP04 (2015) 085 [arXiv:1502.02820] [INSPIRE]. · Zbl 1390.83195
[9] Emparan, R.; Shiromizu, T.; Suzuki, R.; Tanabe, K.; Tanaka, T., Effective theory of black holes in the 1/D expansion, JHEP, 06, 159, (2015) · Zbl 1388.83432 · doi:10.1007/JHEP06(2015)159
[10] Bhattacharyya, S.; De, A.; Minwalla, S.; Mohan, R.; Saha, A., A membrane paradigm at large D, JHEP, 04, 076, (2016) · Zbl 1388.83007
[11] R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett.115 (2015) 091102 [arXiv:1506.06772] [INSPIRE]. · Zbl 1390.83194
[12] Bhattacharyya, S.; Mandlik, M.; Minwalla, S.; Thakur, S., A charged membrane paradigm at large D, JHEP, 04, 128, (2016) · Zbl 1388.83389
[13] Andrade, T.; Gentle, SA; Withers, B., Drude in D major, JHEP, 06, 134, (2016) · Zbl 1388.83163 · doi:10.1007/JHEP06(2016)134
[14] Emparan, R.; Izumi, K.; Luna, R.; Suzuki, R.; Tanabe, K., Hydro-elastic complementarity in black branes at large D, JHEP, 06, 117, (2016) · doi:10.1007/JHEP06(2016)117
[15] Herzog, CP; Spillane, M.; Yarom, A., The holographic dual of a Riemann problem in a large number of dimensions, JHEP, 08, 120, (2016) · Zbl 1390.83143 · doi:10.1007/JHEP08(2016)120
[16] Bhattacharyya, S.; etal., Currents and radiation from the large D black hole membrane, JHEP, 05, 098, (2017) · Zbl 1380.83123 · doi:10.1007/JHEP05(2017)098
[17] Dandekar, Y.; De, A.; Mazumdar, S.; Minwalla, S.; Saha, A., The large D black hole membrane paradigm at first subleading order, JHEP, 12, 113, (2016) · Zbl 1390.83187 · doi:10.1007/JHEP12(2016)113
[18] Dandekar, Y.; Mazumdar, S.; Minwalla, S.; Saha, A., Unstable ‘black branes’ from scaled membranes at large D, JHEP, 12, 140, (2016) · Zbl 1390.83188 · doi:10.1007/JHEP12(2016)140
[19] S. Bhattacharyya, P. Biswas, B. Chakrabarty, Y. Dandekar and A. Dinda, The large D black hole dynamics in AdS/dS backgrounds, arXiv:1704.06076 [INSPIRE].
[20] García-García, AM; Romero-Bermúdez, A., Conductivity and entanglement entropy of high dimensional holographic superconductors, JHEP, 09, 033, (2015) · Zbl 1388.83053 · doi:10.1007/JHEP09(2015)033
[21] Miyamoto, U., Non-linear perturbation of black branes at large D, JHEP, 06, 033, (2017) · Zbl 1380.83155 · doi:10.1007/JHEP06(2017)033
[22] Haack, M.; Yarom, A., Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP, 10, 063, (2008) · Zbl 1245.81172 · doi:10.1088/1126-6708/2008/10/063
[23] Bhattacharyya, S.; Loganayagam, R.; Mandal, I.; Minwalla, S.; Sharma, A., Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP, 12, 116, (2008) · Zbl 1329.83103 · doi:10.1088/1126-6708/2008/12/116
[24] M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys.B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE]. · Zbl 1194.81207
[25] Kanitscheider, I.; Skenderis, K., Universal hydrodynamics of non-conformal branes, JHEP, 04, 062, (2009) · doi:10.1088/1126-6708/2009/04/062
[26] S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev.D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE]. · Zbl 0825.76634
[27] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601, (2005) · doi:10.1103/PhysRevLett.94.111601
[28] P. Davidson, Turbulence: an introduction for scientists and engineers, Oxford University Press (2015). · Zbl 1315.76001
[29] S. Chen, D.D. Holm, L.G. Margolin and R. Zhang, Direct numerical simulations of the navier-stokes alpha model, PhysicaD 133 (1999) 66. · Zbl 1194.76080
[30] Kang, HS; Chester, S.; Meneveau, C., Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation, J. Fluid Mech., 480, 129, (2003) · Zbl 1063.76507 · doi:10.1017/S0022112002003579
[31] Kraichnan, RH, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417, (1967) · doi:10.1063/1.1762301
[32] Leith, CE, Diffusion approximation for two-dimensional turbulence, Phys. Fluids, 11, 671, (1968) · doi:10.1063/1.1691968
[33] G.K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids12 (1969) II-233. · Zbl 0217.25801
[34] M.A. Rutgers, Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades, Phys. Rev. Lett.81 (1998) 2244. · Zbl 1063.76507
[35] S. Kida and Y. Murakami, Kolmogorov similarity in freely decaying turbulence, Phys. Fluids30 (1987)2030. · Zbl 0629.76067
[36] Hughes, TJ; Mazzei, L.; Oberai, AA; Wray, AA, The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 505, (2001) · Zbl 1184.76236 · doi:10.1063/1.1332391
[37] Vreman, AW; Geurts, BJ; Kuerten, JGM; Zandbergen, PJ, A finite volume approach to large eddy simulation of compressible, homogeneous, isotropic, decaying turbulence, Int. J. Numer. Methods Fluids, 15, 799, (1992) · Zbl 0825.76634 · doi:10.1002/fld.1650150705
[38] H. Clercx and G. van Heijst, Energy spectra for decaying 2D turbulence in a bounded domain, Phys. Rev. Lett.85 (2000) 306.
[39] H. Clercx, A. Nielsen, D. Torres and E. Coutsias, Two-dimensional turbulence in square and circular domains with no-slip walls, Eur. J. Mech.B 20 (2001) 557. · Zbl 1011.76039
[40] P. Santangelo, R. Benzi and B. Legras, The generation of vortices in high-resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity, Phys. FluidsA 1 (1989) 1027. · Zbl 1245.81172
[41] Bracco, A.; McWilliams, J.; Murante, G.; Provenzale, A.; Weiss, J., Revisiting freely decaying two-dimensional turbulence at millennial resolution, Phys. Fluids, 12, 2931, (2000) · Zbl 1184.76069 · doi:10.1063/1.1290391
[42] P.D. Mininni and A. Pouquet, Inverse cascade behavior in freely decaying two-dimensional fluid turbulence, Phys. Rev.E 87 (2013) 033002.
[43] C.E. Wayne, Vortices and two-dimensional fluid motion, Notices Amer. Math. Soc.58 (2011) 10. · Zbl 1372.76002
[44] Westernacher-Schneider, JR; Lehner, L.; Oz, Y., Scaling relations in two-dimensional relativistic hydrodynamic turbulence, JHEP, 12, 067, (2015) · Zbl 1388.83359
[45] C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett.B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].
[46] C. Eling, I. Fouxon and Y. Oz, Gravity and a Geometrization of Turbulence: An Intriguing Correspondence, arXiv:1004.2632 [INSPIRE].
[47] C. Eling and Y. Oz, Holographic Vorticity in the Fluid/Gravity Correspondence, JHEP11 (2013) 079 [arXiv:1308.1651] [INSPIRE].
[48] Westernacher-Schneider, JR; Lehner, L., Numerical measurements of scaling relations in two-dimensional conformal fluid turbulence, JHEP, 08, 027, (2017) · Zbl 1381.83080 · doi:10.1007/JHEP08(2017)027
[49] Emparan, R.; Tanabe, K., Holographic superconductivity in the large D expansion, JHEP, 01, 145, (2014) · doi:10.1007/JHEP01(2014)145
[50] Falkovich, G.; Fouxon, I.; Oz, Y., New relations for correlation functions in Navier-Stokes turbulence, J. Fluid Mech., 644, 465, (2010) · Zbl 1189.76291 · doi:10.1017/S0022112009993429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.