×

Factorization of chiral string amplitudes. (English) Zbl 1390.81442

Summary: We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory

References:

[1] Cachazo, F.; He, S.; Yuan, EY, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett., 113, 171601, (2014) · doi:10.1103/PhysRevLett.113.171601
[2] Cachazo, F.; He, S.; Yuan, EY, Scattering of massless particles: scalars, gluons and gravitons, JHEP, 07, 033, (2014) · Zbl 1391.81198 · doi:10.1007/JHEP07(2014)033
[3] Cachazo, F.; He, S.; Yuan, EY, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP, 01, 121, (2015) · Zbl 1388.81917 · doi:10.1007/JHEP01(2015)121
[4] Cachazo, F.; He, S.; Yuan, EY, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP, 07, 149, (2015) · Zbl 1388.83196 · doi:10.1007/JHEP07(2015)149
[5] Gross, DJ; Mende, PF, The high-energy behavior of string scattering amplitudes, Phys. Lett., B 197, 129, (1987) · doi:10.1016/0370-2693(87)90355-8
[6] Mason, L.; Skinner, D., Ambitwistor strings and the scattering equations, JHEP, 07, 048, (2014) · doi:10.1007/JHEP07(2014)048
[7] Berkovits, N., Infinite tension limit of the pure spinor superstring, JHEP, 03, 017, (2014) · Zbl 1333.83174 · doi:10.1007/JHEP03(2014)017
[8] Ohmori, K., Worldsheet geometries of ambitwistor string, JHEP, 06, 075, (2015) · doi:10.1007/JHEP06(2015)075
[9] Casali, E.; Geyer, Y.; Mason, L.; Monteiro, R.; Roehrig, KA, New ambitwistor string theories, JHEP, 11, 038, (2015) · Zbl 1388.81502 · doi:10.1007/JHEP11(2015)038
[10] Bjerrum-Bohr, NEJ; Damgaard, PH; Tourkine, P.; Vanhove, P., Scattering equations and string theory amplitudes, Phys. Rev., D 90, 106002, (2014)
[11] W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].
[12] Hohm, O.; Siegel, W.; Zwiebach, B., doubled α\^{}{′}-geometry, JHEP, 02, 065, (2014) · Zbl 1333.83190 · doi:10.1007/JHEP02(2014)065
[13] Kawai, H.; Lewellen, DC; Tye, SHH, A relation between tree amplitudes of closed and open strings, Nucl. Phys., B 269, 1, (1986) · doi:10.1016/0550-3213(86)90362-7
[14] S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].
[15] Bjerrum-Bohr, NEJ; Damgaard, PH; Sondergaard, T.; Vanhove, P., The momentum kernel of gauge and gravity theories, JHEP, 01, 001, (2011) · Zbl 1214.81145 · doi:10.1007/JHEP01(2011)001
[16] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys.B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE]. · Zbl 1282.81151
[17] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys.B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE]. · Zbl 1282.81152
[18] Schlotterer, O.; Stieberger, S., Motivic multiple zeta values and superstring amplitudes, J. Phys., A 46, 475401, (2013) · Zbl 1280.81112
[19] F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE]. · Zbl 1321.11087
[20] J. Broedel, O. Schlotterer and S. Stieberger, \(α\)\^{}{′}-expansion of open superstring amplitudes, http://wwwth.mpp.mpg.de/members/stieberg/mzv/index.html. · Zbl 1338.81316
[21] Broedel, J.; Schlotterer, O.; Stieberger, S., Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys., 61, 812, (2013) · Zbl 1338.81316 · doi:10.1002/prop.201300019
[22] Broedel, J.; Schlotterer, O.; Stieberger, S.; Terasoma, T., all order α\^{}{′}-expansion of superstring trees from the Drinfeld associator, Phys. Rev., D 89, 066014, (2014)
[23] C. Reutenauer, Free Lie Algebras, LMS monographs, Clarendon Press (1993). · Zbl 0798.17001
[24] Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, arXiv:1602.01674 [INSPIRE].
[25] Naseer, U.; Zwiebach, B., Three-point functions in duality-invariant higher-derivative gravity, JHEP, 03, 147, (2016) · Zbl 1388.83134 · doi:10.1007/JHEP03(2016)147
[26] Hohm, O.; Zwiebach, B., Green-Schwarz mechanism and α\^{}{′}-deformed Courant brackets, JHEP, 01, 012, (2015) · Zbl 1388.81547 · doi:10.1007/JHEP01(2015)012
[27] Hohm, O.; Zwiebach, B., double metric, generalized metric and α\^{}{′}-deformed double field theory, Phys. Rev., D 93, 064035, (2016)
[28] Hassan, SF; Rosen, RA, Bimetric gravity from ghost-free massive gravity, JHEP, 02, 126, (2012) · Zbl 1309.83083 · doi:10.1007/JHEP02(2012)126
[29] F. Del Monte, D. Francia and P.A. Grassi, Multimetric Supergravities, arXiv:1605.06793 [INSPIRE].
[30] Boulware, DG; Deser, S., Can gravitation have a finite range?, Phys. Rev., D 6, 3368, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.