×

Comparative study of discrete velocity method and high-order lattice Boltzmann method for simulation of rarefied flows. (English) Zbl 1390.76785

Summary: A comparative study of discrete velocity method (DVM) and high-order lattice Boltzmann method (HLBM) is made in this work. The key difference between the DVM and HLBM lies in the use of equilibrium distribution function and discrete velocity. In the DVM, the complete Maxwellian distribution function or the Shakhov distribution function is used and the discrete velocity is to represent the continuous velocity domain in the particle velocity space. As a result, the integral forms for the moments of distribution function are approximated by numerical integration. In order to make the quadrature error to be small enough, a large number of discrete velocity points are required for the DVM in general case. In contrast, in the HLBM, the lattice Boltzmann model is utilized as the equilibrium distribution function and discrete velocity. The construction of lattice Boltzmann model is intended to seek a minimal set of velocities in the particle velocity space to represent the objective hydrodynamics. With lattice properties of the lattice Boltzmann model, the weighted sums of distribution functions at those velocity points can exactly satisfy the physical conservation laws. However, the choice of discrete velocity points may have considerable effect on the accuracy of HLBM for fluid flows with large Knudsen number as reported in the literature. From this study, it was found that HLBM provides reasonable results for fluid flows at moderate Knudsen number and low temperature difference with less computational cost than that of DVM. For fluid flows with large Knudsen number and/or high temperature difference, the DVM is preferred although more computational cost is required.

MSC:

76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ivanov, M. S.; Gimelshein, S. F., Computational hypersonic rarefied flows, Annu Rev Fluid Mech, 30, 469-505, (1998) · Zbl 1398.76088
[2] Struchtrup, H.; Taheri, P., Macroscopic transport models for rarefied gas flows: a brief review, IMA J Appl Math, 76, 672-697, (2011) · Zbl 1276.76074
[3] Dimarco, G.; Pareschi, L., Numerical methods for kinetic equations, Acta Numer, 23, 369-520, (2014) · Zbl 1398.65260
[4] Bird, G. A., Molecular gas dynamics and the direct simulation of gas flows, (1994), Clarendon Press Oxford · Zbl 0709.76511
[5] Mohammadzadeh, A.; Roohi, E.; Niazmand, H., A parallel DSMC investigation of monatomic/diatomic gas flows in a micro/nano cavity, Numer Heat Transf A, 63, 305-325, (2013)
[6] Yang, J. Y.; Huang, J. C., Rarefied flow computations using nonlinear model Boltzmann equations, J Comput Phys, 120, 323-339, (1995) · Zbl 0845.76064
[7] Li, Z. H.; Zhang, H. X., Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J Comput Phys, 193, 708-738, (2004) · Zbl 1109.76349
[8] Li, Z. H.; Peng, A. P.; Zhang, H. X.; Yang, J. Y., Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations, Prog Aerosp Sci, 74, 81-113, (2015)
[9] Mieussens, L., Convergence of a discrete-velocity model for the Boltzmann-BGK equation, Comput Math Appl, 41, 83-96, (2001) · Zbl 0980.82027
[10] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J Comput Phys, 162, 429-466, (2000) · Zbl 0984.76070
[11] Aoki, K.; Degond, P.; Mieussens, L., Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect, Commun Comput Phys, 6, 919-954, (2009) · Zbl 1364.76168
[12] Xu, K.; Huang, J. C., A unified gas-kinetic scheme for continuum and rarefied flows, J Comput Phys, 229, 7747-7764, (2010) · Zbl 1276.76057
[13] Chen, S. Z.; Xu, K.; Li, C. B.; Cai, Q. D., A unified gas kinetic scheme with moving mesh and velocity space adaptation, J Comput Phys, 231, 6643-6664, (2012)
[14] Huang, J. C.; Xu, K.; Yu, P. B., A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations, Commun Comput Phys, 14, 1147-1173, (2013) · Zbl 1373.76217
[15] Guo, Z. L.; Xu, K.; Wang, R. J., Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case, Phys Rev E, 88, (2013)
[16] Guo, Z. L.; Wang, R. J.; Xu, K., Discrete unified gas kinetic scheme for all Knudsen number flows: II. thermal compressible case, Phys Rev E, 91, (2015)
[17] Russo, G.; Filbet, F., Semi-Lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet Relat Models, 2, 231-250, (2009) · Zbl 1372.76090
[18] Russo, G.; Santagati, P.; Yun, S. B., Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J Num Anal, 50, 1111-1135, (2012) · Zbl 1252.35218
[19] Yang, L. M.; Shu, C.; Wu, J.; Wang, Y., Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J Comput Phys, 306, 291-310, (2016) · Zbl 1351.76271
[20] Niu, X. D.; Hyodo, S. A.; Munekate, T.; Suga, K., Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization, Phys Rev E, 76, (2007)
[21] Chen, S.; Tian, Z. W., Simulation of microchannel flow using the lattice Boltzmann method, Physica A, 388, 4803-4810, (2009)
[22] An, H. Y.; Zhang, C. H.; Meng, J. P.; Zhang, Y. H., Analytical solution of axi-symmetrical lattice Boltzmann model for cylindrical Couette flows, Physica A, 391, 8-14, (2012)
[23] Esfahani, J. A.; Norouz, A, Two relaxation time lattice Boltzmann model for rarefied gas flows, Physica A, 393, 51-61, (2014) · Zbl 1395.76066
[24] Bakhshan, Y.; Omidvar, A., Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using lattice Boltzmann (MRT) method, Physica A, 440, 161-175, (2015) · Zbl 1400.76071
[25] Shan, X. W.; Yuan, X. F.; Chen, H. D., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J Fluid Mech, 550, 413-441, (2006) · Zbl 1097.76061
[26] Kim, S. H.; Pitsch, H.; Boyd, I. D., Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J Comput Phys, 227, 8655-8671, (2008) · Zbl 1147.82027
[27] Kim, S. H.; Pitsch, H.; Boyd, I. D., Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows, Phys Rev E, 77, (2008)
[28] Yudistiawan, W. P.; Ansumali, S.; Karlin, I. V., Hydrodynamics beyond Navier-Stokes: the slip flow model, Phys Rev E, 78, (2008)
[29] Meng, J. P.; Zhang, Y. H., Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows, J Comput Phys, 230, 835-849, (2011) · Zbl 1283.76059
[30] Meng, J. P.; Zhang, Y. H.; Hadjiconstantinou, N. G.; Radtke, G. A.; Shan, X. W., Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J Fluid Mech, 718, 347-370, (2013) · Zbl 1284.76305
[31] Montessori, A.; Prestininzi, P.; La Rocca, M.; Succi, S., Lattice Boltzmann approach for complex nonequilibrium flows, Phys Rev E, 92, (2015)
[32] Succi, S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Phys Rev Lett, 89, (2002)
[33] Sbragaglia, M.; Succi, S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Phys Fluids, 17, (2005) · Zbl 1187.76469
[34] Meng, J. P.; Zhang, Y. H., Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys Rev E, 83, (2011)
[35] Shi, Y.; Brookes, P. L.; Yap, Y. W.; Sader, J. E., Accuracy of the lattice Boltzmann method for low-speed noncontinuum flows, Phys Rev E, 83, (2011)
[36] De Izarra, L.; Rouet, J. L.; Izrar, B., High-order lattice Boltzmann models for gas flow for a wide range of Knudsen numbers, Phys Rev E., 84, (2011)
[37] Chikatamarla, S. S.; Karlin, I. V., Lattices for the lattice Boltzmann method, Phys Rev E, 79, (2009)
[38] L.S. Luo, Some recent results on discrete velocity model and ramifications for lattice Boltzmann equation, NASA/CR-2000-209855, ICASE Report NO. 2000-7.
[39] He, X. Y.; Luo, L. S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys Rev E, 56, 6811-6817, (1997)
[40] He, X. Y.; Luo, L. S., A priori derivation of the lattice Boltzmann equation, Phys Rev E, 55, R6333, (1997)
[41] Shan, X. W.; He, X. Y., Discretization of the velocity space in the solution of the Boltzmann equation, Phys Rev Lett, 80, 65-68, (1998)
[42] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component systems, Phys Rev, 94, 511-525, (1954) · Zbl 0055.23609
[43] Chu, C. K., Kinetic-theoretic description of shock wave formation. II., Phys Fluids, 8, 1450-1455, (1965)
[44] Galant, D., Gauss quadrature rules for the evaluation of \(2 \pi^{- 1 / 2} \int_0^\infty e^{- x^2} f(x) d x\), Math Comp, 23, (1969), 674+s31-s39
[45] Shizgal, B., A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems, J Comput Phys, 41, 309-328, (1981) · Zbl 0459.65096
[46] Blazek, J., Computation fluid dynamics: principle and application, (2001), Elsevier · Zbl 0995.76001
[47] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J Comput Phys, 32, 101-136, (1979) · Zbl 1364.65223
[48] van Albada, G. D.; van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron Astrophys, 108, 76-84, (1982) · Zbl 0492.76117
[49] Qian, Y. H.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys Lett, 17, 479-484, (1992) · Zbl 1116.76419
[50] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 329-364, (1998) · Zbl 1398.76180
[51] Sone, Y.; Takata, S.; Ohwada, T., Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules, Eur J Mech B/Fluids, 9, 273-288, (1990) · Zbl 0696.76089
[52] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 387-411, (1982) · Zbl 0511.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.