×

Assessment of SLAU2 and other flux functions with slope limiters in hypersonic shock-interaction heating. (English) Zbl 1390.76281

Summary: Roles of flux functions (such as SLAU2 by K. Kitamura and E. Shima [J. Comput. Phys. 245, 62–83 (2013; Zbl 1349.76487)]), limiters, and reconstructed variables are thoroughly investigated in problems related to hypersonic heating issues, i.e., shock anomalous solutions (e.g., carbuncle phenomenon) and shock-interaction heating. Through numerical tests comparing those different combinations, it is revealed that each of those factors has great impacts on the solutions at almost the same level. In particular, flux functions having at most one intermediate cell at the captured shock (e.g., AUSM\(^{+}\)-up) show improved robustness against shock anomalies as the spatial accuracy increases, whereas those containing a few cells to represent the shock (e.g., SLAU2) tend to do the opposite. Among many possible combinations, SLAU2, AUSM\(^{+}\)-up, or AUSMPW+ along with \(\kappa = -1\), minmod-limited monotone upstream-centered schemes for conservation laws (MUSCL) interpolation for primitive variables show acceptable performance in the present study, as confirmed by the severe Type IV shock-interaction heating problem. In addition, conservation of mass flux across a shockwave is proven to be essential in accurate heating computations, indicating a possible, further modification of SLAU2.

MSC:

76K05 Hypersonic flows

Citations:

Zbl 1349.76487

Software:

HLLE; AUSMPW+; AUSM
Full Text: DOI

References:

[1] Peery, K.M. and Imlay, S.T., “Blunt-body flow simulations,” AIAA Paper 88-2904, 1988.
[2] Pandolfi, M.; D’Ambrosio, D., Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon, J Comput Phys, 166, 2, 271-301, (2001) · Zbl 0990.76051
[3] Henderson, S.J. and Menart, J.A., “Grid study on blunt bodies with the carbuncle phenomenon,” AIAA Paper 2007-3904, 2007.
[4] Kitamura, K.; Roe, P.; Ismail, F., Evaluation of Euler fluxes for hypersonic flow computations, AIAA J, 47, 1, 44-53, (2009)
[5] Kitamura, K.; Shima, E.; Nakamura, Y.; Roe, P., Evaluation of Euler fluxes for hypersonic heating computations, AIAA J, 48, 4, 763-776, (2010)
[6] Kitamura, K.; Shima, E.; Roe, P., Carbuncle phenomena and other shock anomalies in three dimensions, AIAA J, 50, 12, 2655-2669, (2012)
[7] Kitamura, K.; Shima, E., Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes, J Comput Phys, 245, 62-83, (2013) · Zbl 1349.76487
[8] Barth, T.J., “Some notes on shock-resolving flux functions Part 1: Stationary characteristics,” NASA TM-101087, 1989.
[9] Chauvat, Y.; Moschetta, J. M.; Gressier, J., Shock wave numerical structure and the carbuncle phenomenon, Int J Numer Methods Fluids, 47, 8-9, 903-909, (2005) · Zbl 1134.76372
[10] Roe, P. L., Fluctuations and signals—A framework for numerical evolution problems, (Morton, K. W.; Baines, M. J., Numerical methods for fluid dynamics, (1982), Academic Press New York), 232-236 · Zbl 0569.76072
[11] Zaide, D. W.; Roe, P. L., A second-order finite volume method that reduces numerical shockwave anomalies in one dimension, (Proceedings of the 21st AIAA computational fluid dynamics conference, San Diego, CA, (2013)), 2013-2699, AIAA Paper
[12] Roe, P. L., Characteristic-based schemes for the Euler equations, Ann Rev Fluid Mech, 18, 337-365, (1986) · Zbl 0624.76093
[13] Tu, G.; Zhao, X.; Mao, M.; Chen, J.; Deng, X.; Liu, H., Evaluation of Euler fluxes by a high-order CFD scheme: shock instability, Int J Comput Fluid Dyn, 28, 5, 1-16, (2014)
[14] Coratekin, T.; van Keuk, J.; Ballmann, J., Performance of upwind schemes and turbulence models in hypersonic flows, AIAA J, 42, 5, 945-957, (2004)
[15] Edney, B., Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock, 115, (1968), Aeronautical Research Institute of Sweden Stockholm, Sweden, FFA Rept
[16] Feng, QU; Chao, YAN; Jian, YU; Di, SUN, A study of parameter-free shock capturing upwind schemes on low speeds’ issues, Sci China Technol Sci, 57, 6, 1183-1190, (2014)
[17] Chakravarthy, Kalyana; Chakraborty, Debasis, Modified SLAU2 scheme with enhanced shock stability, Comput Fluids, 100, 176-184, (2014) · Zbl 1391.76466
[18] Kitamura, K.; Liou, M.-S.; Chang, C.-H., Extension and comparative study of ausm-family schemes for compressible multiphase flow simulations, Commun Comput Phys, 16, 3, 632-674, (2014) · Zbl 1373.76134
[19] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 43, 357-372, (1981) · Zbl 0474.65066
[20] Harten, A., High resolution schemes for hyperbolic conservation laws, J Comput Phys, 49, 357-393, (1983) · Zbl 0565.65050
[21] Harten, A.; Lax, P. D.; Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 1, 35-61, (1983) · Zbl 0565.65051
[22] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J Numer Anal, 25, 2, 294-318, (1988) · Zbl 0642.76088
[23] Toro, E. F.; M., Spruce; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock Waves, 4, 25-34, (1994) · Zbl 0811.76053
[24] Van Leer, B., Flux vector splitting for the Euler equations, (Lecture Notes in Physics, vol. 170, (1982), Springer Berlin Heidelberg), 507-512
[25] Hänel, D, Schwane, R., and Seider, G., “On the accuracy of upwind schemes for the solution of the Navier-Stokes equations,” AIAA Paper 1987-1105, 1987.
[26] Liou, M. S., A sequel to AUSM, part II: AUSM^{+}-up for all speeds, J Comput Phys, 214, 137-170, (2006) · Zbl 1137.76344
[27] Shima, E.; Kitamura, K., Parameter-free simple low-dissipation AUSM-family scheme for all speeds, AIAA J, 49, 1693-1709, (2011)
[28] Kim, S. S.; Kim, C.; Rho, O. H.; Hong, S. K., Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme, J Comput Phys, 174, 38-80, (2001) · Zbl 1106.76421
[29] Shima, E.; Kitamura, K., Multidimensional numerical noise from captured shockwave and its cure, AIAA J, 51, 4, 992-998, (2013)
[30] Mandal, J. C.; Panwar, V., Robust HLL-type Riemann solver capable of resolving contact discontinuity, Comput Fluids, 63, 148-164, (2012) · Zbl 1365.76164
[31] G. C., Zha; Bilgen, E., Numerical solutions of Euler equations by using a new flux vector splitting scheme, Int J Numer Meth Fluids, 17, 115-144, (1993) · Zbl 0779.76067
[32] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J Comput Phys, 32, 101-136, (1979) · Zbl 1364.65223
[33] Van Albada, G. D.; Van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron Astrophys, 108, 76-84, (1982) · Zbl 0492.76117
[34] Kitamura, K., A further survey of shock capturing methods on hypersonic heating issues, (Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, AIAA Paper 2013-2698,, San Diego, CA, (Jun. 24-27, 2013))
[35] Fay, J. A.; Riddell, F. R., Theory of stagnation point heat transfer in dissociated air, J Aeronaut Sci, 25, 73-85, (1958)
[36] Wieting, A. R.; Holden, M. S., Experimental shock-wave interference heating on a cylinder at Mach 6 and 8, AIAA J, 27, 11, 1557-1565, (1989)
[37] Zhong, X., Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock interference heating problems, AIAA J, 32, 8, 1606-1616, (1994) · Zbl 0815.76070
[38] Thareja, R. R.; Stewart, J. R.; Hassan, O.; Morgan, K.; Peraire, J., A point implicit unstructured grid solver for the Euler and Navier-Stokes equations, Int J Numer Methods Fluids, 9, 4, 405-425, (1989) · Zbl 0665.76071
[39] Gnoffo, P., Buck, G., Moss, J., Nielsen, E., Berger, K., Jones, W.T., and Rubavsky, R., “Aerothermodynamic analyses of towed ballutes,” AIAA Paper 2006-3771, 2006.
[40] Esquivel, A.; Raga, A. C.; Cantó, J.; Rodríguez-González, A.; López-Cámara, D.; Velázquez, P. F.; De Colle, F., Model of Mira’s cometary head/tail entering the local bubble, Astrophys J, 725, 1466-1475, (2010)
[41] Kitamura, K.; Nonaka, S.; Kuzuu, K.; Aono, J.; Fujimoto, K.; Shima, E., Numerical and experimental investigations of epsilon launch vehicle aerodynamics at Mach 1.5, J Spacecr Rocket, 50, 4, 896-916, (2013)
[42] Nishikawa, H.; Kitamura, K., Very simple, carbuncle-free, boundary-layer resolving, rotated-hybrid Riemann solvers, J Comput Phys, 227, (2008), pp. 2560-2581 · Zbl 1388.76185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.