×

Finite element method for coupled diffusion-deformation theory in polymeric gel based on slip-link model. (English) Zbl 1390.74055

Summary: A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper, a new hybrid free energy function for gels is formulated by combining the Edwards-Vilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated. The study of large deformation kinetics of polymeric gel is useful for diverse applications.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics

Software:

FEAPpv
Full Text: DOI

References:

[1] Wichterle, O. and Lim, D. Hydrophilic gels for biological use. nature, 185(4706), 117-118 (1960) · doi:10.1038/185117a0
[2] Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. Hydrogels in pharmaceutical formu-lations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46 (2000) · doi:10.1016/S0939-6411(00)00090-4
[3] Luo, Y. and Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3(4), 249-254 (2004) · doi:10.1038/nmat1092
[4] Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C., and Jo, B. H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. nature, 404(6778), 588-590 (2000) · doi:10.1038/35007047
[5] Dong, L., Agarwal, A. K., Beebe, D. J., and Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. nature, 442(7102), 551-554 (2006) · doi:10.1038/nature05024
[6] Gibbs, J. W.; Bumstead, H. A., The Scientific Papers of J, 184-184 (1906)
[7] Biot, M. A. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155-164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[8] Flory, P. J. and Rehner, J. Statistical mechanics of cross-linked polymer networks II: swelling. The Journal of Chemical Physics, 11(11), 521-526 (1943) · doi:10.1063/1.1723792
[9] Baek, S. and Pence, T. Inhomogeneous deformation of elastomer gels in equilibrium under satu-rated and unsaturated conditions. Journal of the Mechanics and Physics of Solids, 59(3), 561-582 (2011) · Zbl 1270.74080 · doi:10.1016/j.jmps.2010.12.013
[10] Hong, W., Zhao, X., Zhou, J., and Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56(5), 1779-1793 (2008) · Zbl 1162.74313 · doi:10.1016/j.jmps.2007.11.010
[11] Zhang, H. Strain-stress relation in macromolecular microsphere composite hydro-gel. Applied Mathematics and Mechanics (English Edition), 37(11), 1539-1550 (2016) https://doi.org/10.1007/s10483-016-2110-9 · doi:10.1007/s10483-016-2110-9
[12] Cai, S. and Suo, Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids, 59(11), 2259-2278 (2011) · Zbl 1270.74163 · doi:10.1016/j.jmps.2011.08.008
[13] Hong, W., Liu, Z., and Suo, Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 46(17), 3282-3289 (2009) · Zbl 1167.74333 · doi:10.1016/j.ijsolstr.2009.04.022
[14] Hong, W., Zhao, X., and Suo, Z. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 58(4), 558-577 (2010) · Zbl 1244.82089 · doi:10.1016/j.jmps.2010.01.005
[15] Liu, Z. S., Swaddiwudhipong, S., Cui, F. S., Hong, W., Suo, Z., and Zhang, Y. W. Analytical solutions of polymeric gel structures under buckling and wrinkle. International Journal of Applied Mechanics, 3(2), 235-257 (2012) · doi:10.1142/S1758825111000968
[16] Wineman, A. and Rajagopal, K. R. Shear induced redistribution of fluid within a uniformly swollen nonlinear elastic cylinder. International Journal of Engineering Science, 30(11), 1583-1595 (1992) · Zbl 0764.73056 · doi:10.1016/0020-7225(92)90127-3
[17] Chester, S. A. and Anand, L. A coupled theory of fluid permeation and large deformations for elastomeric materials. Journal of the Mechanics and Physics of Solids, 58(11), 1879-1906 (2010) · Zbl 1225.74034 · doi:10.1016/j.jmps.2010.07.020
[18] Mergell, B. and Everaers, R. Tube models for rubber-elastic systems. Macromolecules, 34(16), 5675-5686 (2001) · doi:10.1021/ma002228c
[19] Flory, P. J. Theory of elasticity of polymer networks-effect of local constraints on junctions. Journal of Chemical Physics, 66(12), 5720-5729 (1977) · doi:10.1063/1.433846
[20] Ronca, G. and Allegra, G. Approach to rubber elasticity with internal constraints. Journal of Chemical Physics, 63(11), 4990-4997 (1975) · doi:10.1063/1.431245
[21] Edwards, S. F. Theory of rubber elasticity. British Polymer Journal, 9(2), 140-143 (1977) · doi:10.1002/pi.4980090209
[22] Kloczkowski, A., Mark, J. E., and Erman, B. A diffused-constraint theory for the elasticity of amorphous polymer networks I: fundamentals and stress-strain isotherms in elongation. Macro-molecules, 28(14), 5089-5096 (1995) · doi:10.1021/ma00118a043
[23] Edwards, S. and Vilgis, T. The effect of entanglements in rubber elasticity. Polymer, 27(4), 483-492 (1986) · doi:10.1016/0032-3861(86)90231-4
[24] Higgs, P. G. and Gaylord, R. J. Slip-links, hoops and tubes: tests of entanglement models of rubber elasticity. Polymer, 31(1), 70-74 (1990) · doi:10.1016/0032-3861(90)90351-X
[25] Urayama, K. Network topology-mechanical properties relationships of model elastomers. Polymer Journal, 40(8), 669-678 (2008) · doi:10.1295/polymj.PJ2008033
[26] Meissner, B. and Matejka, L. Comparison of recent rubber-elasticity theories with biaxial stress-strain data: the slip-link theory of Edwards and Vilgis. Polymer, 43(13), 3803-3809 (2002) · doi:10.1016/S0032-3861(02)00150-7
[27] Yan, H. X. and Jin, B. Influence of microstructural parameters on mechanical behavior of polymer gels. International Journal of Solids and Structures, 49(3), 436-444 (2012) · doi:10.1016/j.ijsolstr.2011.10.026
[28] Yan, H. X. and Jin, B. Influence of environmental solution pH and microstructural parameters on mechanical behavior of amphoteric pH-sensitive hydrogels. European Physical Journal E, 35(5), 36-46 (2012) · doi:10.1140/epje/i2012-12036-7
[29] Yan, H. X. and Jin, B. Equilibrium swelling of a polyampholytic pH-sensitive hydrogel. European Physical Journal E, 36(3), 27-33 (2013) · doi:10.1140/epje/i2013-13027-x
[30] Yan, H. X., Jin, B., Gao, S. H., and Chen, L. W. Equilibrium swelling and electrochemistry of polyampholytic pH-sensitive hydrogel. International Journal of Solids and Structures, 51(23/24), 4149-4156 (2014) · doi:10.1016/j.ijsolstr.2014.08.016
[31] Chester, S. A., Di Leo, C. V., and Anand, L. A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. International Journal of Solids and Structures, 52, 1-18 (2015) · doi:10.1016/j.ijsolstr.2014.08.015
[32] Flory, P. J. Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 10(1), 51-61 (1942) · doi:10.1063/1.1723621
[33] Huggins, M. L. Solutions of long chain compounds. The Journal of Chemical Physics, 9(5), 440-440 (1941) · doi:10.1063/1.1750930
[34] Zienkiewicz, O. C., Taylor, R. L., and Fox, D. The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann Elsevier Ltd., Oxford, 17-19 (2014) · Zbl 1307.74003
[35] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann Elsevier Ltd., Oxford, 64-66 (2013) · Zbl 1307.74005
[36] Yoon, J., Cai, S., Suo, Z., and Hayward, R. C. Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter, 6(23), 6004-6012 (2010) · doi:10.1039/c0sm00434k
[37] Bouklas, N. and Huang, R. Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter, 8(31), 8194-8203 (2012) · doi:10.1039/c2sm25467k
[38] Achilleos, E. C., Prud’homme, R. K., Christodoulou, K. N., Gee, K. R., and Kevrekidis, I. G. Dynamic deformation visualization in swelling of polymer gels. Chemical Engineering Science, 55(17), 3335-3340 (2000) · doi:10.1016/S0009-2509(00)00002-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.