×

Computation of option Greeks under hybrid stochastic volatility models via Malliavin calculus. (English) Zbl 1390.60198

Summary: This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus under the assumption that the underlying asset and interest rate both evolve from a stochastic volatility model and a stochastic interest rate model, respectively. Therefore, it integrates the recent developments in the Malliavin calculus for the computation of Greeks: Delta, Vega, and Rho and it extends the method slightly. The main results show that Malliavin calculus allows a running Monte Carlo (MC) algorithm to present numerical implementations and to illustrate its effectiveness. The main advantage of this method is that once the algorithms are constructed, they can be used for numerous types of option, even if their payoff functions are not differentiable.

MSC:

60H07 Stochastic calculus of variations and the Malliavin calculus
60J60 Diffusion processes
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Alòs, E.; Ewald, C.-O., Malliavin differentiability of the Heston volatility and applications to option pricing, Adv. in Appl. Probab., 40, 1, 144-162, (2008) · Zbl 1137.91422 · doi:10.1239/aap/1208358890
[2] Bavouzet, M.P.; Messaoud, M., Computation of greeks using malliavin’s calculus in jump type market models, Electron. J. Probab., 11, 10-276300, (2006) · Zbl 1113.60057
[3] Benhamou, E., Smart Monte Carlo: various tricks using Malliavin calculus, Quantitative Finance, 2, 5, 329-336, (2002) · Zbl 1405.91688 · doi:10.1088/1469-7688/2/5/301
[4] Bismut, J.M., Large Deviations and the Malliavin Calculus, (1984), Birkhäuser · Zbl 0537.35003
[5] Davis, M.H.A.; Johansson, M.P., Malliavin Monte Carlo greeks for jump diffusions, Stochastic Processes and their Applications, 116, 1, 101-129, (2006) · Zbl 1081.60040 · doi:10.1016/j.spa.2005.08.002
[6] El-Khatib, Y.; Privault, N., Computations of greeks in a market with jumps via the Malliavin calculus, Finance and Stochastics, 8, 2, 161-179, (2004) · Zbl 1098.91050 · doi:10.1007/s00780-003-0111-6
[7] Elworthy, K.; Li, X.-M., Formulae for the derivatives of heat semigroups, Journal of Functional Analysis, 125, 1, 252-286, (1994) · Zbl 0813.60049 · doi:10.1006/jfan.1994.1124
[8] Etheridge, A., A Course in Financial Calculus, (2002), Cambridge University Press · Zbl 1002.91025 · doi:10.1017/CBO9780511810107
[9] Ewald, C.-O.; Zhang, A., A new technique for calibrating stochastic volatility models: the Malliavin gradient method, Quantitative Finance, 6, 2, 147-158, (2006) · Zbl 1136.91430 · doi:10.1080/14697680500531676
[10] Ewald, C.-O., Xiao, Y., Zou, Y., Siu, T.-K.: Malliavin differentiability of a class of Feller-diffusions with relevance in finance. Advances in statistics, probability and actuarial science (2012) . · Zbl 1277.60100
[11] Fournié, E.; Lasry, J.-M.; Lebuchoux, J.; Lions, P.-L.; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance and Stochastics, 3, 4, 391-412, (1999) · Zbl 0947.60066 · doi:10.1007/s007800050068
[12] Fournié, E.; Lasry, J.-M.; Lebuchoux, J.; Lions, P.-L., Applications of Malliavin calculus to Monte-Carlo methods in finance. II, Finance and Stochastics, 5, 2, 201-236, (2001) · Zbl 0973.60061 · doi:10.1007/PL00013529
[13] Glasserman, P., Monte Carlo Methods in Financial Engineering, (2013), Springer
[14] Grzelak, L.; Oosterlee, C.W.; Van Weeren, S., Extension of stochastic volatility equity models with the hull-white interest rate process, Quantitative Finance, 12, 1, 89-105, (2012) · Zbl 1241.91124 · doi:10.1080/14697680903170809
[15] Mhlanga, F.J.: Computation of Greeks using Malliavin calculus. PhD thesis, University of Cape Town, Department of Mathematics and Applied Mathematics, University of Cape Town (2011)
[16] Nualart, D., The Malliavin Calculus and Related Topics, 1995, (2006), Springer · Zbl 1099.60003 · doi:10.1007/978-1-4757-2437-0
[17] Protter, P.E., Stochastic Integration and Differential Equations, (2005), Springer · doi:10.1007/978-3-662-10061-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.