×

Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori. (English) Zbl 1390.58016

Let \((M,g)\) be a \(d\)-dimensional compact Riemannian manifold without boundary and let \(P\) be the nonminimal Laplace type operator on a smooth hermitean vector bundle \(V\) over \(M\) of fiber \(\mathbb{C}^N\) written locally as \[ P := - [g^{\mu\nu} u(x) \partial_\mu \partial_\nu + v^\nu(x) \partial_\nu + w(x)]. \] Here \(u(x)\in M_N(\mathbb{C})\) is a positive and invertible matrix valued function and \(v^\nu\) and \(w\) are \(M_N(\mathbb{C})\) matrix-valued functions. The operator is expressed in a local trivialization of \(V\) over an open subset of \(M\) which is also a chart on \(M\) with coordinates \((x^\mu).\) This trivialization is such that the adjoint for the hermitean metric corresponds to the adjoint of matrices and the trace on endomorphisms on \(V\) becomes the usual trace \(\text{tr}\) on matrices.
For any \(a\in \Gamma (\text{End}(V)),\) the authors consider the asymptotics of the heat-trace \[ \text{Tr}(a e^{- t P}) \underset{t \downarrow 0^+}{\sim} \sum_{r = 0}^\infty a_r(a, P) t^{(r - d)/2} \] where \(\text{Tr}\) is the operator trace, and each coefficient \(a_r(a, P)\) can be written as an integral of the functions \(a_r(a, P)(x) = \text{tr} [a(x) \mathcal{R}_r(x)].\)
The paper presents a way to compute \(\mathcal{R}_2\) by adapting the techniques developed by the authors in [ibid. 116, 90–118 (2017; Zbl 1373.58013)]. The idea behind this computation is to extract the real matrix content of the coefficient \(a_2\) which is related to the scalar curvature of the manifold \(M.\)

MSC:

58J37 Perturbations of PDEs on manifolds; asymptotics
58J35 Heat and other parabolic equation methods for PDEs on manifolds
35J47 Second-order elliptic systems
81T13 Yang-Mills and other gauge theories in quantum field theory
46L87 Noncommutative differential geometry

Citations:

Zbl 1373.58013

Software:

Mathematica

References:

[1] Iochum, B.; Masson, T., Heat trace for Laplace type operators with non-scalar symbols, J. Geom. Phys., 116, 90-118 (2017) · Zbl 1373.58013
[2] Avramidi, I. G., Gauged gravity via spectral asymptotics of non-Laplace type operators, J. High Energy Phys., 2004, 07, 030 (2004)
[3] Avramidi, I. G.; Branson, T. P., Heat kernel asymptotics of operators with non-Laplace principal part, Rev. Math. Phys., 13, 07, 847-890 (2001) · Zbl 1031.58015
[4] Wolfram Research Inc., Mathematica, Version 11.1, 2017.; Wolfram Research Inc., Mathematica, Version 11.1, 2017.
[5] B. Iochum, T. Masson, Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori, Mathematica Notebook added as ancillary file on arXiv, 2017.; B. Iochum, T. Masson, Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori, Mathematica Notebook added as ancillary file on arXiv, 2017.
[6] Connes, A.; Tretkoff, P., The Gauss-Bonnet theorem for the noncommutative two torus, (Noncommutative Geometry, Arithmetic, and Related Topics (2011), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press Baltimore, MD), 141-158 · Zbl 1251.46037
[7] Connes, A.; Moscovici, H., Modular curvature for noncommutative two-tori, J. Amer. Math. Soc., 27, 3, 639-684 (2014) · Zbl 1332.46070
[8] Fathizadeh, F.; Khalkhali, M., Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., 7, 1145-1183 (2013) · Zbl 1295.46053
[9] Fathizadeh, F.; Khalkhali, M., The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure, J. Noncommut. Geom., 6, 457-480 (2012) · Zbl 1256.58002
[10] Dabrowski, L.; Sitarz, A., Curved noncommutative torus and Gauss-Bonnet, J. Math. Phys., 54, 013518 (2013) · Zbl 1285.58014
[11] Fathizadeh, F.; Khalkhali, M., Scalar curvature for noncommutative four-tori, J. Noncommut. Geom., 9, 473-503 (2015) · Zbl 1332.46071
[12] Azzali, S.; Lévy, C.; Neira-Jiménez, C.; Paycha, S., Traces of holomorphic families of operators on the noncommutative torus and on Hilbert Modules, (Geometrics Methods in Physics (2014), Birkhäuser), 3-38 · Zbl 1339.58013
[13] Sitarz, A., Wodzicki residue and minimal operators on a noncommutative 4-dimensional torus, J. Pseudo-Diff. Oper. Appl., 5, 305-317 (2014) · Zbl 1323.58005
[14] Fathizadeh, F., On the scalar curvature for the noncommutative four torus, J. Math. Phys., 56, 6, 062303 (2015) · Zbl 1327.58010
[15] Dabrowski, L.; Sitarz, A., An asymmetric noncommutative torus, SIGMA, 11, 075 (2015), 11 pages · Zbl 1328.58005
[16] Y. Liu, Modular curvature for toric noncommutative manifolds, 2015, arXiv:1510.04668v2; Y. Liu, Modular curvature for toric noncommutative manifolds, 2015, arXiv:1510.04668v2
[17] Sadeghi, S., On Logarithmic Sobolev Inequality and a Scalar Curvature Formula for Noncommutative Tori (2016), Western University: Western University Ontario, (Ph.D. thesis)
[18] A. Connes, F. Fathizadeh, The term \(a_4\) arXiv:1611.09815v1; A. Connes, F. Fathizadeh, The term \(a_4\) arXiv:1611.09815v1
[19] Connes, A., \(C{}^\ast \)-algèbres et géométrie différentielle, C. R. Acad. Sci. Paris A, 290, 599-604 (1980) · Zbl 0433.46057
[20] Lesch, M.; Moscovici, H., Modular curvature and Morita equivalence, Geom. Funct. Anal., 26, 818-873 (2016) · Zbl 1375.46053
[21] Pedersen, G. K., On the operator equation \(H T + T H = 2 K\), Indiana Univ. Math. J., 25, 11, 1029-1033 (1976) · Zbl 0343.47010
[22] Gilkey, P. B., (Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Studies in Advanced Mathematics (1995), CRC Press, Inc) · Zbl 0856.58001
[23] Gilkey, P. B., Asymptotic Formulae in Spectral Geometry (2003), CRC Press
[24] Fell, J. M.G., The structure of algebras of operator fields, Acta Math., 106, 3-4, 233-280 (1961) · Zbl 0101.09301
[25] Blackadar, B., Operator Algebras: Theory of \(C^\ast \)-Algebras and Von Neumann Algebras, Vol. 122 (2006), Springer Science · Zbl 1092.46003
[26] Gracia-Bondía, J. M.; Várilly, J. C.; Figueroa, H., Elements of Noncommutative Geometry (2001), Birkhäuser: Birkhäuser Boston · Zbl 0958.46039
[27] Dubois-Violette, M.; Kriegl, A.; Maeda, Y.; Michor, P. W., Smooth *-algebras, Progr. Theoret. Phys. Suppl., 144, 54-78 (2002) · Zbl 1026.46062
[28] Lesch, M., Divided differences in noncommutative geometry: Rearrangement lemma, functional calculus and expansional formula, J. Noncommut. Geom., 11, 193-223 (2017) · Zbl 1373.46067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.