×

Fundamental aspects of curvature indices for characterizing dynamical systems. (English) Zbl 1390.37064

Summary: It is important to characterize the properties of dynamical systems by a quantity that signifies their structural changes, in particular those associated with occurrence of chaos or other transitional behaviors. There are some well-known indices, such as Lyapunov exponent, fractal dimension, and Kolmogorov entropy, while in this article we use a new quantifier, named the curvature index, to study the dynamical systems. The curvature index [Y.-S. Chen and C.-C. Chang, Chaos 22, No. 2, 023134, 7 p. (2012; Zbl 1331.37020)] is defined as the limit of the average curvature of a trajectory during evolution for a dynamical system, which lumps all the bending effects of the trajectory to a number, and estimates its average size (such as an attractor) in virtue of an inscribed space ball. One may define \(N\)-1 curvature indices for an \(N\)-dimensional dynamical system. Once the system undergoes a structural change, there are corresponding changes in the first and/or higher curvatures. The study is aimed to examine fundamental aspects of the curvature indices with further applications to some outstanding examples of dynamical systems in the literature, in parallel to the analysis by the Lyapunov exponents.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Citations:

Zbl 1331.37020
Full Text: DOI

References:

[1] Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992) · doi:10.1002/9783527617500
[2] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003) · Zbl 1027.37002
[3] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[4] May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[5] Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25-52 (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[6] Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669-706 (1979) · Zbl 0515.58028 · doi:10.1007/BF01107909
[7] Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712-716 (1980) · doi:10.1103/PhysRevLett.45.712
[8] Takens, F.: Detecting Strange Attractors in Turbulence. Springer, Berlin (1981) · Zbl 0513.58032 · doi:10.1007/BFb0091924
[9] Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[10] Pecora, L.M.: Synchronizing chaotic systems. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 2038 (1993) · Zbl 0800.94100
[11] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[12] Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44(4), 2374-2383 (1991) · doi:10.1103/PhysRevA.44.2374
[13] Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 25(9), 821-824 (2015) · Zbl 0938.37019 · doi:10.1063/1.4917383
[14] Brown, R., Bryant, P., Abarbanel, H.D.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43(6), 2787-2806 (1991) · doi:10.1103/PhysRevA.43.2787
[15] Mandelbrot, B.: How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636-638 (1967) · doi:10.1126/science.156.3775.636
[16] Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14(6), 2338-2345 (1976) · doi:10.1103/PhysRevA.14.2338
[17] Oseledec, V.I.: A multiplicative ergodic theorem; the Lyapunov characteristic numbers of dynamical system. Trans. Mosc. Math. Society 19, 197-231 (1968) · Zbl 1371.37062
[18] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: numerical application. Meccanica 15(1), 9-20 (1980) · Zbl 0488.70015 · doi:10.1007/BF02128236
[19] Bridges, T.J., Reich, S.: Computing Lyapunov exponents on a Stiefel manifold. Phys. D Nonlinear Phenom. 156(3-4), 219-238 (2001) · Zbl 0979.37044 · doi:10.1016/S0167-2789(01)00283-4
[20] Greene, J.M., Kim, J.S.: The calculation of Lyapunov spectra. Phys. D Nonlinear Phenom. 24(1-3), 213-225 (1987) · Zbl 0619.34047 · doi:10.1016/0167-2789(87)90076-5
[21] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[22] Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 50(2), R647-R650 (1994)
[23] Chen, Y.S., Chang, C.C.: The curvature index and synchronization of dynamical systems. Chaos 22(2), 371-383 (2012) · Zbl 1331.37020
[24] Gluck, H.: Higher curvatures of curves in Euclidean space. Am. Math. Mon. 73(73), 257-266 (1966) · Zbl 0144.20501
[25] Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397-398 (1976) · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[26] Saltzman, B.: Finite amplitude free convection as an initial value problem-I. J. Atmos. Sci. 19(19), 329-341 (1962) · doi:10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
[27] Li, Y., Liu, X., Chen, G., Liao, X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39(8), 865-879 (2011)
[28] Voglis, N.: Detection of ordered and chaotic motion using the dynamical spectra. Celest. Mech. Dyn. Astron. 73(1), 211-220 (1999) · Zbl 0944.37013 · doi:10.1023/A:1008307332442
[29] Skokos, C., Bountis, T.C., Antonopoulos, C.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Phys. D Nonlinear Phenom. 231(1), 30-54 (2007) · Zbl 1117.37034 · doi:10.1016/j.physd.2007.04.004
[30] Xu, Y., Wang, H.: Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control. Abstr. Appl. Anal. 2013(108), 219-228 (2013)
[31] Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3735-3744 (2014) · Zbl 1470.94099 · doi:10.1016/j.cnsns.2014.02.029
[32] Li, Y., Yong, X., Kurths, J., Yue, X.: Lévy-noise-induced transport in a rough triple-well potential. Phys. Rev. E 94(4-1), 042222 (2016) · doi:10.1103/PhysRevE.94.042222
[33] Yong, X., Li, Y., Hao, Z., Li, X., Kurths, J.: The switch in a genetic toggle system with Lévy noise. Sci Rep 6, 31505 (2016) · doi:10.1038/srep31505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.