×

Integrability and gauge equivalence of the reverse space-time nonlocal Sasa-Satsuma equation. (English) Zbl 1390.35335

Summary: The integrability of the reverse space-time nonlocal Sasa-Satsuma equation in the Liouville sense is established by showing the existence of infinitely many conservation laws and putting into a bi-Hamiltonian form. Further, we show that the nonlocal Sasa-Satsuma equation for focusing case and defocusing case is, respectively, gauge equivalent to a generalized Heisenberg-like equation and a modified generalized Heisenberg-like equation. Finally, by using of special variable transformations, various kinds of nonlinear waves are obtained from those of the classical counterpart.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI

References:

[1] Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, New York (2001) · Zbl 1024.78514
[2] Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schr\(\ddot{o}\)dinger Systems. Cambridge University Press, Cambridge (2004) · Zbl 1057.35058
[3] Sasa, N; Satsuma, J, New type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 60, 409-417, (1991) · Zbl 0920.35128 · doi:10.1143/JPSJ.60.409
[4] Ali, S; Rizvi, STR; Younis, M, Traveling wave solutions for nonlinear dispersive water-wave systems with time-dependent coefficients, Nonlinear Dyn., 82, 1755-1762, (2015) · Zbl 1348.76037 · doi:10.1007/s11071-015-2274-z
[5] Cheemaa, N; Younis, M, New and more exact traveling wave solutions to integrable (\(2+1\))-dimensional maccari system, Nonlinear Dyn., 83, 1395-1401, (2016) · Zbl 1351.35016 · doi:10.1007/s11071-015-2411-8
[6] Arnous, AH; Mahmood, SA; Younis, M, Dynamics of optical solitons in dual-core fibers via two integration schemes, Superlattice Microstruct., 106, 156-162, (2017) · doi:10.1016/j.spmi.2017.03.044
[7] Afzal, SS; Younis, M; Rizvi, STR, Optical dark and dark-singular solitons with anti-cubic nonlinearity, Optik, 147, 27-31, (2017) · doi:10.1016/j.ijleo.2017.08.067
[8] Zhao, HQ; Yuan, JY, A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system, J. Phys. A Math. Theor., 49, 275204, (2016) · Zbl 1342.35361 · doi:10.1088/1751-8113/49/27/275204
[9] Zhao, HQ; Zhu, ZN, Solitons and dynamic properties of the coupled semidiscrete Hirota equation, AIP Adv., 3, 022111, (2013) · doi:10.1063/1.4791765
[10] Pickering, A; Zhao, HQ; Zhu, ZN, On the continuum limit for a semidiscrete Hirota equation, Proc. R. Soc. A, 472, 20160628, (2016) · Zbl 1371.35275 · doi:10.1098/rspa.2016.0628
[11] Wang, L; Zhu, YJ; Qi, FH; Li, M; Guo, R, Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous lenells-Fokas equation in inhomogeneous fibers, Chaos, 25, 063111, (2015) · doi:10.1063/1.4922025
[12] Wang, L; Zhang, JH; Liu, C; Li, M; Qi, FH, Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects, Phys. Rev. E, 93, 062217, (2016) · doi:10.1103/PhysRevE.93.062217
[13] Cai, LY; Wang, X; Wang, L; Li, M; Liu, Y; Shi, YY, Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects, Nonlinear Dyn., 90, 2221-2230, (2017) · doi:10.1007/s11071-017-3797-2
[14] Zhang, JH; Wang, L; Liu, C, Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects, Proc. R. Soc. A, 473, 20160681, (2017) · Zbl 1404.35398 · doi:10.1098/rspa.2016.0681
[15] Zhao, H.Q., Yuan, J.Y., Zhu, Z.N.: Integrable semi-discrete Kundu-Eckhaus equation: Darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. (2017). https://doi.org/10.1007/s00332-017-9399-9 · Zbl 1354.35011
[16] Sedletskii, Yu.V.: The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. J. Exp. Theor. Phys. 97, 180-193 (2003)
[17] Slunyaev, AV, A high-order nonlinear envelope equation for gravity waves in finite-depth water, J. Exp. Theor. Phys., 101, 926-941, (2005) · doi:10.1134/1.2149072
[18] Potasek, MJ; Tabor, M, Exact solutions for an extended nonlinear Schrödinger equation, Phys. Lett. A., 154, 449-452, (1991) · doi:10.1016/0375-9601(91)90971-A
[19] Cavalcanti, SB; Cressoni, JC; Cruz, HR; Gouveia-Neto, AS, Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation, Phys. Rev. A, 43, 6162-6165, (1991) · doi:10.1103/PhysRevA.43.6162
[20] Trippenbach, M; Band, YB, Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media, Phys. Rev. A, 57, 4791-4803, (1998) · doi:10.1103/PhysRevA.57.4791
[21] Mihalache, D; Torner, L; Moldoveanu, F; Panoiu, NC; Truta, N, Inverse-scattering approach to femtosecond solitons in monomode optical fibers, Phys. Rev. E, 48, 4699-4709, (1993) · doi:10.1103/PhysRevE.48.4699
[22] Ghosh, S; Kundu, A; Nandy, S, Soliton solutions, Liouville integrability and gauge equivalence of sasa-Satsuma equation, J. Math. Phys., 40, 1993-2000, (1999) · Zbl 0946.35097 · doi:10.1063/1.532845
[23] Gilson, C; Hietarinta, J; Nimmo, JJC; Ohta, Y, Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions, Phys. Rev. E, 68, 016614, (2003) · doi:10.1103/PhysRevE.68.016614
[24] Nimmo, JJC; Yilmaz, H, Binary Darboux transformation for the sasa-Satsuma equation, J. Phys. A Math. Theor., 48, 425202, (2015) · Zbl 1325.37046 · doi:10.1088/1751-8113/48/42/425202
[25] Zhang, HQ; Hu, R; Zhang, MY, Darboux transformation and dark soliton solution for the defocusing sasa-Satsuma equation, Appl. Math. Lett., 69, 101-105, (2017) · Zbl 1376.78008 · doi:10.1016/j.aml.2017.02.012
[26] Bandelow, U; Akhmediev, N, Sasa-Satsuma equation: soliton on a background and its limiting cases, Phys. Rev. E, 86, 026606, (2012) · Zbl 1260.35195 · doi:10.1103/PhysRevE.86.026606
[27] Ablowitz, MJ; Musslimani, ZH, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110, 064105, (2013) · doi:10.1103/PhysRevLett.110.064105
[28] Ji, JL; Zhu, ZN, On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 42, 699-708, (2017) · Zbl 1473.37081 · doi:10.1016/j.cnsns.2016.06.015
[29] Ma, LY; Shen, SF; Zhu, ZN, Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation, J. Math. Phys., 58, 103501, (2017) · Zbl 1380.37132 · doi:10.1063/1.5005611
[30] Song, CQ; Xiao, DM; Zhu, ZN, Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 45, 13-28, (2017) · Zbl 1485.35346 · doi:10.1016/j.cnsns.2016.09.013
[31] Song, CQ; Xiao, DM; Zhu, ZN, Reverse space-time nonlocal sasa-Satsuma equation and its solutions, J. Phys. Soc. Jpn., 86, 054001, (2017) · doi:10.7566/JPSJ.86.054001
[32] Dai, CQ; Wang, Y; Liu, J, Spatiotemporal Hermite-Gaussian solitons of a (\(3+1\))-dimensional partially nonlocal nonlinear Schrödinger equation, Nonlinear Dyn., 84, 1157-1161, (2016) · Zbl 1354.35011 · doi:10.1007/s11071-015-2560-9
[33] Zhang, Y; Liu, YP; Tang, XY, A general integrable three-component coupled nonlocal nonlinear Schrödinger equation, Nonlinear Dyn., 89, 2729-2738, (2017) · doi:10.1007/s11071-017-3621-z
[34] Wang, YY; Dai, CQ; Wang, XG, Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity, Nonlinear Dyn., 77, 1323-1330, (2014) · doi:10.1007/s11071-014-1381-6
[35] Dai, CQ; Wang, YY, Controllable combined Peregrine soliton and Kuznetsov-ma soliton in PT-symmetric nonlinear couplers with gain and loss, Nonlinear Dyn., 80, 715-721, (2015) · doi:10.1007/s11071-015-1900-0
[36] Pertsch, T; Peschel, U; Kobelke, J; Schuster, K; Bartelt, H; Nolte, S; Tunnermann, A; Lederer, F, Nonlinearity and disorder in fiber arrays, Phys. Rev. Lett., 93, 053901, (2004) · doi:10.1103/PhysRevLett.93.053901
[37] Lou, SY; Huang, F, Alice-bob physics: coherent solutions of nonlocal KdV systems, Sci. Rep., 7, 869, (2017) · doi:10.1038/s41598-017-00844-y
[38] Ma, LY; Zhu, ZN, Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence, J. Math. Phys., 57, 083507, (2016) · Zbl 1352.35163 · doi:10.1063/1.4960818
[39] Gadzhimuradov, TA; Agalarov, AM, Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A, 93, 062124, (2016) · doi:10.1103/PhysRevA.93.062124
[40] Ma, L.Y., Shen, S.F., Zhu, Z.N.: From discrete nonlocal nonlinear Schrödinger equation to coupled discrete Heisenberg ferromagnet equation. arXiv:1704.06937 [nlin.SI] (2017) · Zbl 1351.35016
[41] Magri, F, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19, 1156-1162, (1978) · Zbl 0383.35065 · doi:10.1063/1.523777
[42] Olver, PJ, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18, 1212-1215, (1977) · Zbl 0348.35024 · doi:10.1063/1.523393
[43] Yang, B., Yang, J.K.: Transformations between nolocal and local integrable equations. arXiv:1705.00332vl [nlin.PS] (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.