×

Solitons of the coupled Schrödinger-Korteweg-de Vries system with arbitrary strengths of the nonlinearity and dispersion. (English) Zbl 1390.35307

Summary: New two-component soliton solutions of the coupled high-frequency (HF)–low-frequency (LF) system, based on Schrödinger-Korteweg-de Vries (KdV) system with the Zakharov’s coupling, are obtained for arbitrary relative strengths of the nonlinearity and dispersion in the LF component. The complex HF field is governed by the linear Schrödinger equation with a potential generated by the real LF component, which, in turn, is governed by the KdV equation including the ponderomotive coupling term, representing the feedback of the HF field onto the LF component. First, we study the evolution of pulse-shaped pulses by means of direct simulations. In the case when the dispersion of the LF component is weak in comparison to its nonlinearity, the input gives rise to several solitons in which the HF component is much broader than its LF counterpart. In the opposite case, the system creates a single soliton with approximately equal widths of both components. Collisions between stable solitons are studied too, with a conclusion that the collisions are inelastic, with a greater soliton getting still stronger, and the smaller one suffering further attenuation. Robust intrinsic modes are excited in the colliding solitons. A new family of approximate analytical two-component soliton solutions with two free parameters is found for an arbitrary relative strength of the nonlinearity and dispersion of the LF component, assuming weak feedback of the HF field onto the LF component. Further, a one-parameter (non-generic) family of exact bright-soliton solutions, with mutually proportional HF and LF components, is produced too. Intrinsic dynamics of the two-component solitons, induced by a shift of their HF component against the LF one, is also studied, by means of numerical simulations, demonstrating excitation of a robust intrinsic mode. In addition to the above-mentioned results for LF-dominated two-component solitons, which always run in one (positive) velocities, we produce HF-dominated soliton complexes, which travel in the opposite (negative) direction. They are obtained in a numerical form and by means of a quasi-adiabatic analytical approximation. The solutions with positive and negative velocities correspond, respectively, to super- and subsonic Davydov-Scott solitons.{
©2017 American Institute of Physics}

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions

References:

[1] 1.V. E.Zakharov, S. V.Manakov, S. P.Novikov, and L. P.Pitaevskii, Solitons: The Inverse Scattering Transform Method ( Nauka Publishers, Moscow, 1980) (in Russian) [English translation: Consultants Bureau, New York, 1984];M.Ablowitz and H.Segur, Solitons and the Inverse Scattering Transform ( SIAM, Philadelphia, 1981);R. K.Dodd, J. C.Eilbeck, J. D.Gibbon, and H. C.Morris, Solitons and Nonlinear Wave Equations ( Academic Press, London, 1982);A. C.Newell, Solitons in Mathematics and Physics ( SIAM, Philadelphia, 1985);E.Infeld and G.Rowlands, Nonlinear Waves, Solitons, and Chaos ( Cambridge University Press, Cambridge, 2000);L. A.Dickey, Soliton Equations and Hamiltonian Systems ( World Scientific, New York, 2005). · Zbl 0598.35002
[2] 2.R.Rajaraman, Solitons and Instantons: An Introductions to Solitons and Instantons in Quantum Field Theory ( North Holland, Amsterdam, 1982);V. G.Baryakhtar, M. V.Chetkin, B. A.Ivanov, and S. N.Gadetskii, Dynamics of Topological Magnetic Solitons: Experiment and Theory ( Springer-Verlag, Berlin, 1994);A. V.Ustinov, Solitons in Josephson Junctions: Physics of Magnetic Fluxons in Superconducting Junctions and Arrays ( Wiley, Hoboken, 2005);T.Vachaspati, Kinks and Domain Walls ( Cambridge University Press, Cambridge, 2006). · Zbl 0493.35074
[3] Yang, Y., Solitons in Field Theory and Nonlinear Analysis (2001) · Zbl 0982.35003
[4] 4.G. P.Agrawal, Nonlinear Fiber Optics ( Academic Press, San Diego, 2001);Y. S.Kivshar and G. P.Agrawal, Optical Solitons: From Fibers to Photonic Crystals ( Academic Press, San Diego, 2003). · Zbl 1024.78514
[5] 5.B. A.Malomed, D.Mihalache, F.Wise, and L.Torner, J. Opt. B7, R53 (2005); 10.1088/1464-4266/7/5/R02B. A.Malomed, D.Mihalache, F.Wise, and L.Torner, J. Phys. B: At. Mol. Opt. Phys.49, 170502 (2016); 10.1088/0953-4075/49/17/170502D.Mihalache, Rom. J. Phys.59, 295 (2014);B. A.Malomed, Eur. Phys. J. Spec. Top.225, 2507 (2016).10.1140/epjst/e2016-60025-y
[6] Malomed, B. A., Soliton Management in Periodic Systems (2006) · Zbl 1214.35056
[7] Dauxois, T.; Peyrard, M., Physics of Solitons (2006) · Zbl 1192.35001
[8] Ostrovsky, L., Asymptotic Perturbation Theory of Waves (2015) · Zbl 1320.35003
[9] Zakharov, V. E., Sov. Phys. JETP, 33, 927 (1971)
[10] Ostrovskaya, E. A.; Mingaleev, S. F.; Kivshar, Yu. S.; Gaididei, Yu. B.; Christiansen, P. L., Phys. Lett. A, 282, 157 (2001) · Zbl 0974.82031 · doi:10.1016/S0375-9601(01)00157-8
[11] Fan, E. G., J. Phys. A: Math. Gen., 35, 6853 (2002) · Zbl 1039.35029 · doi:10.1088/0305-4470/35/32/306
[12] Kaya, D.; El-Sayed, S. M., Phys. Lett. A, 313, 82 (2003) · Zbl 1040.35099 · doi:10.1016/S0375-9601(03)00723-0
[13] Janssen, P., The Interaction of Ocean Waves and Wind (2009)
[14] Brunetti, M.; Marchiando, N.; Berti, N.; Kasparian, J., Phys. Lett. A, 378, 1025 (2014) · Zbl 1362.76024 · doi:10.1016/j.physleta.2014.02.004
[15] Wahl, R. J.; Teague, W. J., J. Phys. Oceanogr., 13, 2236 (1983) · doi:10.1175/1520-0485(1983)013<2236:EOBVFF>2.0.CO;2
[16] Kharif, C.; Kraenkel, R. A.; Manna, M. A.; Thomas, R., J. Fluid Mech., 664, 138 (2010) · Zbl 1221.76089 · doi:10.1017/S0022112010004349
[17] Craig, W.; Guyenne, P.; Sulem, C., Nat. Hazards, 57, 617 (2011) · doi:10.1007/s11069-010-9535-4
[18] 18.A. S.Davydov and N. I.Kislukha, Phys. Status Solidi B75, 735 (1976);10.1002/pssb.2220750238A. S.Davydov, Phys. Scr.20, 387 (1979);10.1088/0031-8949/20/3-4/013V. Y.Antonchenko, A. S.Davydov, and A. V.Zolotaryuk, Phys. Status Solidi B115, 631 (1983);10.1002/pssb.2221150234A. S.Davydov, Solitons in Molecular Systems ( Reidel, Dordrecht, (1987);A.Scott, Phys. Rev. A26, 578 (1982);10.1103/PhysRevA.26.578A.Scott, Phys. Scr.29, 279 (1984);10.1088/0031-8949/29/3/016A.Scott, Phys. Rep.217, 1 (1992).10.1016/0370-1573(92)90093-F
[19] Hayata, K.; Koshiba, M., Phys. Rev. Lett., 71, 3275 (1993) · doi:10.1103/PhysRevLett.71.3275
[20] Cisneros-Ake, L. A.; Solano Pelaez, J. F., Physica D, 346, 20 (2017) · Zbl 1415.35083 · doi:10.1016/j.physd.2017.02.001
[21] Gromov, E.; Malomed, B., Chaos, 26, 123118 (2016) · Zbl 1378.35070 · doi:10.1063/1.4972199
[22] Gaididei, Y. B.; Christiansen, P. L.; Mingaleev, S. F., Phys. Scr., 51, 289 (1995) · doi:10.1088/0031-8949/51/3/001
[23] Zolotaryuk, A. V.; Spatschek, K. H.; Savin, A. V., Phys. Rev. B, 54, 266 (1996) · doi:10.1103/PhysRevB.54.266
[24] 24.I. V.Barashenkov and E. Y.Panova, Physica D69, 114 (1993); 10.1016/0167-2789(93)90184-3I. V.Barashenkov, Phys. Rev. Lett.77, 1193 (1996).10.1103/PhysRevLett.77.1193
[25] 25.K.Batra, R. P.Sharma, and A. D.Verga, J. Plasma Phys.72, 671 (2006); 10.1017/S002237780500423XF.Haas and P. K.Shukla, Phys. Rev. E79, 066402 (2009).10.1103/PhysRevE.79.066402
[26] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.