×

Inflation, de Sitter landscape and super-Higgs effect. (English) Zbl 1388.83834

Summary: We continue developing cosmological models involving nilpotent chiral super-fields, which provide a simple unified description of inflation and the current acceleration of the universe in the supergravity context. We describe here a general class of models with a positive cosmological constant at the minimum of the potential, such that supersymmetry is spontaneously broken in the direction of the nilpotent superfield \(S\). In the unitary gauge, these models have a simple action where all highly non-linear fermionic terms of the classical Volkov-Akulov action disappear. We present masses for bosons and fermions in these theories. By a proper choice of parameters in this class of models, one can fit any possible set of the inflationary parameters \(n_{s}\) and \(r\), a broad range of values of the vacuum energy \(V_{0}\), which plays the role of the dark energy, and achieve a controllable level of supersymmetry breaking. This can be done without introducing light moduli, such as Polonyi fields, which often lead to cosmological problems in phenomenological supergravity.

MSC:

83E50 Supergravity
83F05 Relativistic cosmology

References:

[1] A.D. Linde, The inflationary universe, Rept. Prog. Phys.47 (1984) 925. · doi:10.1088/0034-4885/47/8/002
[2] A.D. Sakharov, Cosmological transitions with a change in metric signature, Sov. Phys. JETP60 (1984) 214 [Zh. Eksp. Teor. Fiz.87 (1984) 375] [INSPIRE].
[3] T. Banks, TCP, quantum gravity, the cosmological constant and all that. . ., Nucl. Phys.B 249 (1985) 332 [INSPIRE]. · doi:10.1016/0550-3213(85)90020-3
[4] A.D. Linde, Inflation and quantum cosmology, in 300 years of gravitation, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1987).
[5] S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett.59 (1987) 2607 [INSPIRE]. · doi:10.1103/PhysRevLett.59.2607
[6] A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett.B 175 (1986) 395 [INSPIRE]. · doi:10.1016/0370-2693(86)90611-8
[7] W. Lerche, D. Lüst and A.N. Schellekens, Chiral four-dimensional heterotic strings from selfdual lattices, Nucl. Phys.B 287 (1987) 477 [INSPIRE]. · doi:10.1016/0550-3213(87)90115-5
[8] R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE]. · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[9] E. Silverstein, (A)dS backgrounds from asymmetric orientifolds, hep-th/0106209 [INSPIRE].
[10] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE]. · Zbl 1244.83036
[11] M.R. Douglas, The statistics of string/M theory vacua, JHEP05 (2003) 046 [hep-th/0303194] [INSPIRE]. · doi:10.1088/1126-6708/2003/05/046
[12] L. Susskind, The Anthropic landscape of string theory, in Universe or multiverse?, B. Carr ed., Cambridge University Press, Cambridge U.K. (2009), hep-th/0302219 [INSPIRE]. · Zbl 1188.83105
[13] R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP11 (2010) 011 [arXiv:1008.3375] [INSPIRE]. · doi:10.1088/1475-7516/2010/11/011
[14] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev.D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
[15] A.D. Linde, Chaotic inflation, Phys. Lett.B 129 (1983) 177 [INSPIRE]. · doi:10.1016/0370-2693(83)90837-7
[16] A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys.5 (1990) 1 [hep-th/0503203] [INSPIRE].
[17] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett.85 (2000) 3572 [hep-ph/0004243] [INSPIRE]. · doi:10.1103/PhysRevLett.85.3572
[18] R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter vacua, JHEP1410 (2014) 11 [arXiv:1406.4866] [INSPIRE]. · Zbl 1333.83244 · doi:10.1007/JHEP10(2014)011
[19] A. Linde, D. Roest and M. Scalisi, Inflation and dark energy with a single superfield, JCAP03 (2015) 017 [arXiv:1412.2790] [INSPIRE]. · doi:10.1088/1475-7516/2015/03/017
[20] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett.B 131 (1983) 59 [INSPIRE]. · doi:10.1016/0370-2693(83)91091-2
[21] A.S. Goncharov, A.D. Linde and M.I. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett.B 147 (1984) 279 [INSPIRE]. · doi:10.1016/0370-2693(84)90116-3
[22] T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev.D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].
[23] G.R. Dvali, Inflation versus the cosmological moduli problem, hep-ph/9503259 [INSPIRE].
[24] M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett.75 (1995) 398 [hep-ph/9503303] [INSPIRE]. · doi:10.1103/PhysRevLett.75.398
[25] E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J.C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE]. · doi:10.1140/epjc/s10052-012-2268-7
[26] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE]. · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[27] S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP10 (2014) 143 [arXiv:1408.4096] [INSPIRE]. · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[28] R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP01 (2015) 025 [arXiv:1408.5950] [INSPIRE]. · doi:10.1088/1475-7516/2015/01/025
[29] R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP12 (2014) 117 [arXiv:1411.1121] [INSPIRE]. · doi:10.1007/JHEP12(2014)117
[30] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP12 (2014) 172 [arXiv:1411.2605] [INSPIRE]. · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[31] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett.16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz.16 (1972) 621] [INSPIRE]. · Zbl 0983.81112
[32] D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett.B 46 (1973) 109. · doi:10.1016/0370-2693(73)90490-5
[33] M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE]. · doi:10.1103/PhysRevLett.41.451
[34] E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys.A 11 (1978) 2375 [INSPIRE].
[35] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev.D 19 (1979) 2300 [INSPIRE].
[36] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett.B 220 (1989) 569 [INSPIRE]. · doi:10.1016/0370-2693(89)90788-0
[37] Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[38] E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and superHiggs effect, Nucl. Phys.B 212 (1983) 413 [INSPIRE]. · doi:10.1016/0550-3213(83)90679-X
[39] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1245.83001 · doi:10.1017/CBO9781139026833
[40] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav.17 (2000) 4269 [Erratum ibid.21 (2004) 5017] [hep-th/0006179] [INSPIRE]. · Zbl 1007.83041
[41] S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev.D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].
[42] A. Linde, Inflationary cosmology after Planck 2013, arXiv:1402.0526 [INSPIRE]. · Zbl 1326.83008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.