×

Non-relativistic scale anomalies. (English) Zbl 1388.83546

Summary: We extend the cohomological analysis in our work [ibid. 2015, No. 2, Paper No. 78, 58 p. (2015; Zbl 1388.83037)] of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent \(z=2\) with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

MSC:

83C80 Analogues of general relativity in lower dimensions

Citations:

Zbl 1388.83037

References:

[1] I. Arav, S. Chapman and Y. Oz, Lifshitz Scale Anomalies, JHEP02 (2015) 078 [arXiv:1410.5831] [INSPIRE]. · Zbl 1388.83037 · doi:10.1007/JHEP02(2015)078
[2] M. Baggio, J. de Boer and K. Holsheimer, Anomalous Breaking of Anisotropic Scaling Symmetry in the Quantum Lifshitz Model, JHEP07 (2012) 099 [arXiv:1112.6416] [INSPIRE]. · doi:10.1007/JHEP07(2012)099
[3] T. Griffin, P. Hořava and C.M. Melby-Thompson, Conformal Lifshitz Gravity from Holography, JHEP05 (2012) 010 [arXiv:1112.5660] [INSPIRE]. · Zbl 1348.83074 · doi:10.1007/JHEP05(2012)010
[4] T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz Gravity for Lifshitz Holography, Phys. Rev. Lett.110 (2013) 081602 [arXiv:1211.4872] [INSPIRE]. · Zbl 1348.83074 · doi:10.1103/PhysRevLett.110.081602
[5] K. Jensen, Anomalies for Galilean fields, arXiv:1412.7750 [INSPIRE].
[6] R. Auzzi, S. Baiguera and G. Nardelli, On Newton-Cartan trace anomalies, JHEP02 (2016) 003 [arXiv:1511.08150] [INSPIRE]. · Zbl 1388.83547 · doi:10.1007/JHEP02(2016)003
[7] A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [INSPIRE].
[8] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE]. · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[9] A. Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, On Scale and Conformal Invariance in Four Dimensions, JHEP10 (2015) 171 [arXiv:1309.2921] [INSPIRE]. · Zbl 1388.81372 · doi:10.1007/JHEP10(2015)171
[10] K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].
[11] K. Jensen and A. Karch, Revisiting non-relativistic limits, JHEP04 (2015) 155 [arXiv:1412.2738] [INSPIRE]. · Zbl 1388.83355 · doi:10.1007/JHEP04(2015)155
[12] D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys.321 (2006) 197 [cond-mat/0509786] [INSPIRE]. · Zbl 1107.82419
[13] D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev.D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].
[14] D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
[15] M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall Effect, Phys. Rev.D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].
[16] E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav.32 (2015) 135017 [arXiv:1409.5555] [INSPIRE]. · Zbl 1327.83210 · doi:10.1088/0264-9381/32/13/135017
[17] J. Hartong, E. Kiritsis and N.A. Obers, Field Theory on Newton-Cartan Backgrounds and Symmetries of the Lifshitz Vacuum, JHEP08 (2015) 006 [arXiv:1502.00228] [INSPIRE]. · Zbl 1388.83258 · doi:10.1007/JHEP08(2015)006
[18] R. Banerjee, A. Mitra and P. Mukherjee, Localization of the Galilean symmetry and dynamical realization of Newton-Cartan geometry, Class. Quant. Grav.32 (2015) 045010 [arXiv:1407.3617] [INSPIRE]. · Zbl 1308.83126 · doi:10.1088/0264-9381/32/4/045010
[19] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett.B 309 (1993) 279 [hep-th/9302047] [INSPIRE]. · doi:10.1016/0370-2693(93)90934-A
[20] T. Frankel, The Geometry of Physics: An Introduction, third edition, Cambridge University Press (2012). · Zbl 1049.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.