×

Completeness of the Bethe ansatz for an open \(q\)-Boson system with integrable boundary interactions. (English) Zbl 1388.81240

Summary: We employ a discrete integral-reflection representation of the double affine Hecke algebra of type \(C^\vee C\) at the critical level \(\mathrm{q}=1\), to endow the open finite \(q\)-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall-Littlewood polynomials.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
81T25 Quantum field theory on lattices
82B23 Exactly solvable models; Bethe ansatz
81V70 Many-body theory; quantum Hall effect
33D80 Connections of basic hypergeometric functions with quantum groups, Chevalley groups, \(p\)-adic groups, Hecke algebras, and related topics
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] Bogoliubov, N.M.: Boxed plane partitions as an exactly solvable boson model. J. Phys. A 38, 9415-9430 (2005) · Zbl 1087.82007 · doi:10.1088/0305-4470/38/43/002
[2] Bogoliubov, N.M., Bullough, R.K.: A q-deformed completely integrable Bose gas model. J. Phys. A 25, 4057-4071 (1992) · Zbl 0769.46051 · doi:10.1088/0305-4470/25/14/020
[3] Bogoliubov, N.M., Izergin, A.G., Kitanine, A.N.: Correlation functions for a strongly correlated boson system. Nuclear Phys. B 516, 501-528 (1998) · Zbl 0949.82004 · doi:10.1016/S0550-3213(98)00038-8
[4] Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the \[q\] q-Boson particle system. Compos. Math. 151, 1-67 (2015) · Zbl 1314.05212 · doi:10.1112/S0010437X14007532
[5] Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Commun. Math. Phys. 339, 1167-1245 (2015) · Zbl 1330.82017 · doi:10.1007/s00220-015-2424-7
[6] Carey, A.L., Langmann, E.: Loop groups, anyons and the Calogero-Sutherland model. Commun. Math. Phys. 201, 1-34 (1999) · Zbl 1044.81708 · doi:10.1007/s002200050547
[7] Cherednik, I.: Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series 319, Cambridge University Press, Cambridge (2005) · Zbl 1087.20003
[8] Davies, B., Gutkin, E.: Intertwining operators and the quantum inverse method for the nonlinear Schrödinger equation. Phys. A 151, 167-192 (1988) · Zbl 0696.35149 · doi:10.1016/0378-4371(88)90012-X
[9] Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 347-376 (1993) · Zbl 0773.35071 · doi:10.1007/BF02097001
[10] Duval, A., Pasquier, \[V.: q\] q-bosons, Toda lattice, Pieri rules and Baxter \[q\] q-operator. J. Phys. A 49, 1540006 (2016) · Zbl 1351.37257 · doi:10.1088/1751-8113/49/15/154006
[11] Emsiz, E., Opdam, E.M., Stokman, J.V.: Periodic integrable systems with delta-potentials. Commun. Math. Phys. 264, 191-225 (2006) · Zbl 1116.82020 · doi:10.1007/s00220-006-1519-6
[12] Emsiz, E., Opdam, E.M., Stokman, J.V.: Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Math. (N.S.) 14, 571-605 (2009) · Zbl 1211.81071 · doi:10.1007/s00029-009-0516-y
[13] Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386-394 (1971) · doi:10.1103/PhysRevA.4.386
[14] Gaudin, M.: The Bethe Wavefunction. Cambridge University Press, Cambridge (2014) · Zbl 1335.81010 · doi:10.1017/CBO9781107053885
[15] Gehles, K.E.: Properties of Cherednik Algebras and Graded Hecke Algebras. Ph.D. Thesis, University of Glasgow (2006) · Zbl 1062.81131
[16] Groenevelt, W.: Multivariable Wilson polynomials and degenerate Hecke algebras. Selecta Math. (N.S.) 15, 377-418 (2009) · Zbl 1179.33018
[17] Gutkin, E.: Integrable systems with delta-potential. Duke Math. J. 49, 1-21 (1982) · Zbl 0517.35026 · doi:10.1215/S0012-7094-82-04901-8
[18] Gutkin, E., Sutherland, B.: Completely integrable systems and groups generated by reflections. Proc. Natl. Acad. Sci. USA 76, 6057-6059 (1979) · Zbl 0428.35074 · doi:10.1073/pnas.76.12.6057
[19] Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 2(145), 139-173 (1997) · Zbl 0873.43007 · doi:10.2307/2951825
[20] Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[21] Kaup, D.J.: Exact quantization of the nonlinear Schrödinger equation. J. Math. Phys. 16, 2036-2041 (1975) · doi:10.1063/1.522435
[22] Klimyk, A., Schmüdgen, K.: Quantum Groups and their Representations. Springer, Berlin (1997) · Zbl 0891.17010 · doi:10.1007/978-3-642-60896-4
[23] Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993) · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[24] Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173-246 (2013) · Zbl 1259.05186 · doi:10.1007/s00220-012-1630-9
[25] Korff, C., Stroppel, C.: The \[\widehat{\mathfrak{sl}}(n)_k\] sl^(n)k-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200-268 (2010) · Zbl 1230.17010 · doi:10.1016/j.aim.2010.02.021
[26] Langmann, E.: Second quantization of the elliptic Calogero-Sutherland model. Commun. Math. Phys. 247, 321-351 (2004) · Zbl 1062.81131 · doi:10.1007/s00220-004-1077-8
[27] Li, B., Wang, Y.-S.: Exact solving \[q\] q deformed boson model under open boundary condition. Mod. Phys. Lett. B 26, 1150008 (2012) · Zbl 1266.82028 · doi:10.1142/S0217984911500084
[28] Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 2(130), 1605-1616 (1963) · Zbl 0138.23001 · doi:10.1103/PhysRev.130.1605
[29] Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599-635 (1989) · Zbl 0715.22020 · doi:10.1090/S0894-0347-1989-0991016-9
[30] Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, Art. B45a (2000/01) · Zbl 1032.33010
[31] Macdonald, I.G.: Spherical functions on a \[{\mathfrak{p}}\] p-adic Chevalley group. Bull. Am. Math. Soc. 74, 520-525 (1968) · Zbl 0273.22012 · doi:10.1090/S0002-9904-1968-11989-5
[32] Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199, 161-174 (1972) · Zbl 0286.20062 · doi:10.1007/BF01431421
[33] Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003) · Zbl 1024.33001 · doi:10.1017/CBO9780511542824
[34] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995) · Zbl 0857.17009 · doi:10.1017/CBO9780511613104
[35] Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994) · Zbl 1179.82050
[36] Nelsen, K., Ram, A.: Kostka-Foulkes polynomials and Macdonald spherical functions. In: Surveys in Combinatorics, C. D. Wensley (ed.), London Math. Soc. Lecture Note Ser. 307, Cambridge University Press, Cambridge, 2003, pp. 325-370 · Zbl 1036.05049
[37] Noumi, M.: Macdonald-Koornwinder polynomials and affine Hecke rings. RIMS Kôkyûroku 919, 44-55 (1995). (in Japanese) · Zbl 0900.05017
[38] Oblomkov, A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243-266 (2004) · Zbl 1078.20004 · doi:10.1090/S1088-4165-04-00246-8
[39] O’Connell, N., Pei, Y.: A \[q\] q-weighted version of the Robinson-Schensted algorithm. Electron. J. Probab. 18(95), 1-25 (2013) · Zbl 1278.05243
[40] Parkinson, J.: Buildings and Hecke algebras. J. Algebra 297, 1-49 (2006) · Zbl 1095.20003 · doi:10.1016/j.jalgebra.2005.08.036
[41] Povolotsky, A.M.: On integrability of zero-range chipping models with factorized steady states. J. Phys. A: Math. Theor. 46, Paper 465205 (2013) · Zbl 1290.82022
[42] Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun. Math. Phys. 228, 467-494 (2002) · Zbl 1005.81090 · doi:10.1007/s002200200662
[43] Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. 2(150), 267-282 (1999) · Zbl 0941.33013 · doi:10.2307/121102
[44] Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057-6071 (1998) · Zbl 1085.83501 · doi:10.1088/0305-4470/31/28/019
[45] Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375-2389 (1988) · Zbl 0685.58058 · doi:10.1088/0305-4470/21/10/015
[46] Stokman, J.V.: Difference Fourier transforms for nonreduced root systems. Selecta Math. (N.S.) 9, 409-494 (2003) · Zbl 1048.33015 · doi:10.1007/s00029-003-0331-9
[47] Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A: Math. Theor. 47, Paper 465203 (2014) · Zbl 1310.81083
[48] Thacker, H.B.: Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys. 53, 253-285 (1981) · doi:10.1103/RevModPhys.53.253
[49] Tsilevich, N.V.: The quantum inverse scattering method for the \[q\] q-boson model and symmetric functions. Funct. Anal. Appl. 40, 207-217 (2006) · Zbl 1118.81041 · doi:10.1007/s10688-006-0032-1
[50] van Diejen, J.F., Emsiz, E.: Diagonalization of the infinite \[q\] q-boson system. J. Funct. Anal. 266, 5801-5817 (2014) · Zbl 1293.47071
[51] van Diejen, J.F., Emsiz, E.: Discrete harmonic analysis on a Weyl alcove. J. Funct. Anal. 265, 1981-2038 (2013) · Zbl 1283.43004
[52] van Diejen, J.F., Emsiz, E.: Orthogonality of Bethe Ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove. Commun. Math. Phys. 350, 1017-1067 (2017) · Zbl 1360.82029
[53] van Diejen, J.F., Emsiz, E.: Orthogonality of Macdonald polynomials with unitary parameters. Math. Z. 276, 517-542 (2014) · Zbl 1286.33011
[54] van Diejen, J.F., Emsiz, E.: The semi-infinite \[q\] q-boson system with boundary interaction. Lett. Math. Phys. 104, 103-113 (2014) · Zbl 1292.81105
[55] van Diejen, J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267, 451-476 (2006) · Zbl 1115.82010
[56] van Diejen, J.F.: On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls. Ann. Henri Poincaré 5, 135-168 (2004) · Zbl 1062.81050 · doi:10.1007/s00023-004-0163-y
[57] Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Adv. Math. 299, 543-600 (2016) · Zbl 1341.05249 · doi:10.1016/j.aim.2016.05.010
[58] Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115-1122 (1969) · Zbl 0987.82503 · doi:10.1063/1.1664947
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.