×

A system of nonlinear equations with application to large deviations for Markov chains with finite lifetime. (English) Zbl 1388.60069

Summary: In this paper, we first show the existence of solutions to the following system of nonlinear equations \[ \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_{11}\frac{1}{x_1}+b_{12}\frac{1}{x_2}+\cdots+b_{1n}\frac{1}{x_n},\\ a_{21}\frac{1}{x_1}+a_{22}\frac{x_2}{x_1}+\cdots+a_{2n}\frac{x_n}{x_1}=b_{21}x_1+b_{22}\frac{x_1}{x_2}+\cdots+b_{2n}\frac{x_1}{x_n},\\ \cdots\cdots\\ a_{k,k-1}\frac{1}{x_{k-1}}+\mathop{\sum}\limits_{\mathop{1\leq j\leq n}\limits_{j\neq k-1}}a_{kj}\frac{x_j}{x_{k-1}}=b_{k,k-1}x_{k-1}+\mathop{\sum}\limits_{\mathop{1\leq j\leq n}\limits_{j\neq k-1}}b_{kj}\frac{x_{k-1}}{x_j},\\ \cdots\cdots\\ a_{n,n-1}\frac{1}{x_{n-1}}+\mathop{\sum}\limits_{\mathop{1\leq j\leq n}\limits_{j\neq n-1}}a_{nj}\frac{x_j}{x_{n-1}}=b_{n,n-1}x_{n-1}+\mathop{\sum}\limits_{\mathop{1\leq j\leq n}\limits_{j\neq n-1}}b_{nj}\frac{x_{n-1}}{x_j},\end{cases} \] where \(n\geq 2\) and \(a_{ij}\), \(b_{ij}\), \(1\leq i\),\(j\leq n\), are positive constants. Then, we make use of this result to obtain the large deviation principle for the occupation time distributions of continuous-time finite state Markov chains with finite lifetime.

MSC:

60F10 Large deviations
60J27 Continuous-time Markov processes on discrete state spaces
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

References:

[1] Donsker, M. D.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov process expectations for large time, I, Comm. Pure Appl. Math., 28, 1-47 (1975) · Zbl 0323.60069
[2] Donsker, M. D.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov process expectations for large time, II, Comm. Pure Appl. Math., 28, 279-301 (1975) · Zbl 0348.60031
[3] Donsker, M. D.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov process expectations for large time, III, Comm. Pure Appl. Math., 29, 389-461 (1976) · Zbl 0348.60032
[4] Donsker, M. D.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov process expectations for large time, IV, Comm. Pure Appl. Math., 36, 183-212 (1983) · Zbl 0512.60068
[5] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes (2010), Walter de Gruyter
[6] Fukushima, M.; Takeda, M., A transformation of a symmetric Markov process and the Donsker-Varadhan theory, Osaka J. Math., 21, 311-326 (1984) · Zbl 0542.60077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.