×

The proximal point method for locally Lipschitz functions in multiobjective optimization with application to the compromise problem. (English) Zbl 1388.49013

Summary: This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by H. Bonnel et al. [SIAM J. Optim. 15, No. 4, 953–970 (2005; Zbl 1093.90054)] is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new (scalarization-free) approach for convergence analysis of the method is proposed where the first-order optimality condition of the scalarized problem is replaced by a necessary condition for weak Pareto points of a multiobjective problem. As a consequence, this has allowed us to consider the method without any assumption of convexity over the constraint sets that determine the vectorial improvement steps. This is very important for applications; for example, to extend to a dynamic setting the famous compromise problem in management sciences and game theory.

MSC:

49J52 Nonsmooth analysis
65K05 Numerical mathematical programming methods
90C26 Nonconvex programming, global optimization
90C29 Multi-objective and goal programming
91E99 Mathematical psychology

Citations:

Zbl 1093.90054

Software:

ASMO; VIKOR; NBI
Full Text: DOI

References:

[1] H. C. F. Apolinário, E. A. Papa Quiroz, and P. R. Oliveira, {\it A scalarization proximal point method for quasiconvex multiobjective minimization}, J. Global Optim., 64 (2016), pp. 79-96. · Zbl 1357.90127
[2] J. Y. Bello Cruz, {\it A subgradient method for vector optimization problems}, SIAM J. Optim., 23 (2013), pp. 2169-2182. · Zbl 1295.90065
[3] G. C. Bento, and A. Soubeyran, {\it Generalized inexact proximal algorithms: Routine’s formation with resistance to change, following worthwhile changes}, J. Optim. Theory Appl., 166 (2014), pp. 172-187. · Zbl 1342.49018
[4] G. C. Bento, J. X. Cruz Neto, and A. Soubeyran, {\it A proximal point-type method for multicriteria optimization}, Set-Valued Var. Anal., 22 (2014), pp. 557-573. · Zbl 1296.90113
[5] S. Chrétien and A. O. Hero, {\it Generalized Proximal Point Algorithms and Bundle Implementations}, Technical Report 316, Department of EECS, University of Michigan, Ann Arbor, MI, 1998.
[6] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota, {\it Clarke critical values of subanalytic Lipschitz continuous functions}, Ann. Polon. Math., 87 (2005), pp. 13-25. · Zbl 1090.35033
[7] H. Bonnel, A. N. Iusem, and B. F. Svaiter, {\it Proximal methods in vector optimization}, SIAM J. Optim., 15 (2005), pp. 953-970. · Zbl 1093.90054
[8] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, eds., {\it Practical approaches to multi-objective optimization}, Dagstuhl Seminar, Dagstuhl, Wadern, Germany, 2007, 06501.
[9] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi, {\it A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets}, J. Optim. Theory Appl., 162 (2014), pp. 428-446. · Zbl 1298.90091
[10] J. V. Burke, M. C. Ferris, and M. Qian, {\it On the Clarke subdifferential of the distance function of a closed set}, J. Math. Anal. Appl., 166 (1992), pp. 199-213. · Zbl 0761.49009
[11] L. C. Ceng and J. C. Yao, {\it Approximate proximal methods in vector optimization}, European J. Oper. Res., 183 (2007), pp. 1-19. · Zbl 1128.90053
[12] L. C. Ceng, B. S. Mordukhovich, and J. C. Yao, {\it Hybrid approximate proximal method with auxiliary variational inequality for vector optimization}, J. Optim. Theory Appl., 146 (2010), pp. 267-303. · Zbl 1251.90388
[13] T. D. Choung, B. S. Mordukhovich, and J. C. Yao, {\it Hybrid approximate proximal algorithms for efficient solutions in vector optimization}, J. Nonlinear Convex Anal., 12 (2011), pp. 257-286. · Zbl 1223.49033
[14] F. H. Clarke, {\it Generalized gradients and applications}, Trans. Amer. Math. Soc., 205 (1975), pp. 247-262. · Zbl 0307.26012
[15] F. H. Clarke, {\it Optimization and Nonsmooth Analysis}, Classics Appl. Math. 5, SIAM, Philadelphia, 1990. · Zbl 0696.49002
[16] J. X. Cruz Neto, G. J. P. Silva, O. P. Ferreira, and J. O. Lopes, {\it A subgradient method for multiobjective optimization}, Comput. Optim. Appl., 54 (2013), pp. 461-472. · Zbl 1267.90129
[17] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N Vicente, {\it Direct multisearch for multiobjective optimization}, SIAM J. Optim., 21 (2011), pp. 1109-1140. · Zbl 1230.90167
[18] I. Das and J. E. Dennis, {\it Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems}, SIAM J. Optim., 8 (1998), pp. 631-657. · Zbl 0911.90287
[19] M. Durea and R. Strugariu, {\it Some remarks on proximal point algorithm in scalar and vectorial cases}, Nonlinear Funct. Anal. Appl., 15 (2010), pp. 307-319. · Zbl 1247.90232
[20] G. Eichfelder, {\it An adaptive scalarization method in multiobjective optimization}, SIAM J. Optim., 19 (2009), pp. 1694-1718. · Zbl 1187.90252
[21] J. Fliege and B. F. Svaiter, {\it Steepest descent methods for multicriteria optimization}, Math. Methods Oper. Res., 51 (2000), pp. 479-494. · Zbl 1054.90067
[22] J. Fliege, L. M. Gran͂a Drummond, and B. F. Svaiter, {\it Newton’s method for multiobjective optimization}, SIAM J. Optim., 20 (2009), pp. 602-626. · Zbl 1195.90078
[23] E. H. Fukuda and L. M. Gran͂a Drummond, {\it On the convergence of the projected gradient method for vector optimization}, Optimization, 60 (2011), pp. 1009-1021. · Zbl 1231.90331
[24] E. H. Fukuda and L. M. Gran͂a Drummond, {\it A survey on multiobjective descent methods}, Pesquisa Oper., 34 (2014), pp. 585-620.
[25] W. B. Gearhart, {\it Compromise solutions and estimation of the non inferior set}, J. Optim. Theory Appl., 47 (1979), pp. 29-47. · Zbl 0422.90074
[26] K. S. Goetzmann, {\it The Power of Compromise. Reference Point Methods and Approximation in Multicriteria Optimization}, Doctorial thesis, TU Berlin, 2013. · Zbl 1381.90004
[27] A. Göpfert, H. Riahi, C. Tammer, and C. Zălinescu, {\it Variational Methods in Partially Ordered Spaces}, Springer, Berlin, 2003. · Zbl 1140.90007
[28] L. M. Gran͂a Drummond and A. N. Iusem, {\it A projected gradient method for vector optimization problems}, Comput. Optim. Appl., 28 (2004), pp. 5-29. · Zbl 1056.90126
[29] L. M. Gran͂a Drummond and B. F. Svaiter, {\it A steepest descent method for vector optimization}, J. Comput. Appl. Math., 175 (2005), pp. 395-414. · Zbl 1058.90060
[30] L. M. Gran͂a Drummond, N. Maculan, and B. F. Svaiter, {\it On the choice of parameters for the weighting method in vector optimization}, Math. Program. Ser. B, 111 (2008), pp. 201-216. · Zbl 1163.90021
[31] R. Gregório and P. R. Oliveira, {\it A logarithmic-quadratic proximal point scalarization method for multiobjective programming}, J. Global Optim., 49 (2011), pp. 281-291. · Zbl 1209.90312
[32] X. X. Huang and X. Q. Yang, {\it Duality for multiobjective optimization via nonlinear Lagrangian functions}, J. Optim. Theory Appl., 120 (2004), pp. 111-127. · Zbl 1156.90436
[33] J. Jahn, {\it Scalarization in vector optimization}, Math. Program., 29 (1984), pp. 203-218. · Zbl 0539.90093
[34] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, {\it Combining convergence and diversity in evolutionary multiobjective optimization}, Evol. Comput., 10 (2002), pp. 263-282.
[35] B. Lemaire, {\it The Proximal Algorithm}, in New Methods in Optimization and Their Industrial Uses, J. P. Penot, ed., Internat. Ser. Numer. Math. 87, Birkhäuser, Boston, 1989, pp. 73-87. · Zbl 0692.90079
[36] K. Lewin, {\it Frontiers in group dynamics: Concept, method and reality in social science, social equilibria and social change}, Human Relations, 1 (1947), pp. 5-41.
[37] K. Lewin, {\it Field Theory in Social Science}, Harper and Row, New York, 1951.
[38] D. T. Luc, {\it Theory of Vector Optimization}, Lecture Notes in Econom. and Math. Systems, Springer, New York, 1989.
[39] D. T. Luc, N. X. Tan, and P. N. Tinh, {\it Convex vector functions and their subdifferential}, Acta Math. Vietnam., 23 (1998), pp. 107-127. · Zbl 0906.49007
[40] B. Martinet, {\it Régularisation d’inéquations variationelles par approximations successives}, RAIRO Oper. Res., 4 (1970), pp. 154-159. · Zbl 0215.21103
[41] M. Minami, {\it Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space}, J. Optim. Theory Appl., 41 (1983), pp. 451-461. · Zbl 0502.90076
[42] J. J. Moreau, {\it Proximité et dualité dans un espace Hilbertien}, Bull. Soc. Math. France, 93 (1965) pp. 273-299. · Zbl 0136.12101
[43] F. G. Moreno, P. R. Oliveira, and A. Soubeyran, {\it A proximal algorithm with quasidistance}, Application to habit’s formation, Optimization, 61 (2011), pp. 1383-1403. · Zbl 1267.65064
[44] S. Mostaghim, J. Branke, and H. Schmeck, {\it Multi-Objective Particle Swarm Optimization on Computer Grids}, Technical report 502, Institut AIFB, University of Karlsruhe, Karlsruhe, 2006.
[45] S. Opricovic and G-H. Tzeng, {\it Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS}, European J. Oper. Res., 156 (2004), pp. 445-455. · Zbl 1056.90090
[46] S. Opricovic and G-H. Tzeng, {\it Extended VIKOR method in comparison with outranking methods}, European J. Oper. Res., 178 (2007), pp. 514-529. · Zbl 1107.90376
[47] R. T. Rockafellar, {\it Monotone operators and the proximal point algorithm}, SIAM J. Control. Optim., 14 (1976), pp. 877-898. · Zbl 0358.90053
[48] A. Soubeyran, {\it Variational Rationality, a Theory of Individual Stability and Change: Worthwhile and Ambidextry Behaviors}, preprint, GREQAM, Aix Marseillle University, Marseille, 2009.
[49] A. Soubeyran, {\it Variational Rationality, and the “Unsatisfied Man”: Routines and the Course Pursuit Between Aspirations, Capabilities and Beliefs}, preprint, GREQAM, Aix Marseille University, Marseille, 2010.
[50] A. Soubeyran, {\it Variational Rationality. A Theory of Worthwhile Stay and Change Approach-Avoidance Transitions Ending in Traps}, preprint, GREQAM-AMSE, Aix Marseille University, Marseille, 2016.
[51] L. Thibault, {\it Subdifferentials of nonconvex vector-valued functions}, J. Math. Anal. Appl., 86 (1982), pp. 319-344. · Zbl 0492.58005
[52] K. D. V. Villacorta and P. R. Oliveira, {\it An interior proximal method in vector optimization}, European J. Oper. Res., 214 (2011), pp. 485-492. · Zbl 1244.90244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.