×

Single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform. (English) Zbl 1387.81109

Summary: In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
68U10 Computing methodologies for image processing
81P68 Quantum computation
81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography

Software:

Gromacs
Full Text: DOI

References:

[1] Seyedzadeh, S.M., Norouzi, B., Mosavi, M.R., et al.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1-2), 511-529 (2015) · Zbl 1430.94089 · doi:10.1007/s11071-015-2008-2
[2] Joshi, M., Shakher, C., Singh, K.: Logarithms-based RGB image encryption in the fractional Fourier domain: a non-linear approach. Opt. Lasers Eng. 47(6), 721-727 (2009) · doi:10.1016/j.optlaseng.2008.11.003
[3] Zhou, N.R., Pan, S.M., Cheng, S., et al.: Efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Technol. 82, 121-133 (2016) · doi:10.1016/j.optlastec.2016.02.018
[4] Zhou, N.R., Wang, Y.X., Gong, L.H., et al.: Novel single-channel color image encryption algorithm based on chaos and fractional Fourier transform. Opt. Commun. 284(12), 2789-2796 (2011) · doi:10.1016/j.optcom.2011.02.066
[5] Taguchi, A., Hoshi, Y.: Color image enhancement in HSI color space without gamut problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(2), 792-795 (2015) · doi:10.1587/transfun.E98.A.792
[6] Naik, S.K., Murthy, C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Trans. Image Process. 12(12), 1591-1598 (2003) · doi:10.1109/TIP.2003.819231
[7] Guo, Q., Liu, Z.J., Liu, S.T.: Color image encryption by using Arnold and discrete fractional random transforms in IHS space. Opt. Lasers Eng. 48(12), 1174-1181 (2010) · doi:10.1016/j.optlaseng.2010.07.005
[8] Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(08), 2129-2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[9] Li, C., Xie, T., Liu, Q., et al.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545-1551 (2014) · doi:10.1007/s11071-014-1533-8
[10] Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12 (11), 3477-3493 (2013) · Zbl 1337.94083 · doi:10.1007/s11128-013-0612-y
[11] Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85(9), 2000 (2014)
[12] Hess, B., Kutzner, C., Van Der Spoel, D., et al.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435-447 (2008) · doi:10.1021/ct700301q
[13] Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 230501 (2009) · doi:10.1103/PhysRevLett.103.230501
[14] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010) · Zbl 1288.81001
[15] Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009) · doi:10.1103/PhysRevLett.103.150502
[16] Childs, A.M., Van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82(1), 1 (2010) · Zbl 1205.81057 · doi:10.1103/RevModPhys.82.1
[17] Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012) · doi:10.1103/PhysRevLett.109.050505
[18] Zhou, N.R., Liu, Y., Zeng, G.H., et al.: Novel qubit block encryption algorithm with hybrid keys. Physica A: Statist. Mech. Appl. 375(2), 693-698 (2007) · doi:10.1016/j.physa.2006.09.022
[19] Wang, S., Sang, J., Song, X., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352-359 (2015) · doi:10.1016/j.measurement.2015.05.038
[20] Venegas-Andraca, S.E., Storing, B.S.: Processing, and retrieving an image using quantum mechanics. Proc. SPIE 5105, 137-147 (2003) · doi:10.1117/12.485960
[21] Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1-11 (2010) · doi:10.1007/s11128-009-0123-z
[22] Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63-84 (2011) · Zbl 1209.81066 · doi:10.1007/s11128-010-0177-y
[23] Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193-1213 (2015) · Zbl 1328.81097 · doi:10.1007/s11128-015-0926-z
[24] Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. JACIII 17(3), 404-417 (2013) · doi:10.20965/jaciii.2013.p0404
[25] Sun, B., Le, P.Q., Iliyasu, A.M., et al.: A multi-channel representation for images on quantum computers using the RGB α color space.. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), 2011, pp 1-6. IEEE (2011)
[26] Yang, Y.G., Jia, X., Sun, S.J., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inform. Sci. 277, 445-457 (2014) · doi:10.1016/j.ins.2014.02.124
[27] Akhshani, A., Akhavan, A., Lim, S.C., et al.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653-4661 (2012) · Zbl 1266.81052 · doi:10.1016/j.cnsns.2012.05.033
[28] El-Latif, A.A.A., Li, L., Wang, N., et al.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Signal Process. 93(11), 2986-3000 (2013) · doi:10.1016/j.sigpro.2013.03.031
[29] Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793-803 (2013) · Zbl 1264.81131 · doi:10.1007/s11128-012-0423-6
[30] Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463-2484 (2014) · Zbl 1298.81048 · doi:10.1007/s10773-014-2046-4
[31] Song, X.H., Wang, S., El-Latif, A.A.A., et al.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765-1787 (2014) · Zbl 1305.81058 · doi:10.1007/s11128-014-0768-0
[32] Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926-934 (2006) · doi:10.1016/j.imavis.2006.02.021
[33] Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generations. Chaos, Soliton. Fract. 40(5), 2557-2568 (2009) · Zbl 1168.37314 · doi:10.1016/j.chaos.2007.10.049
[34] Lei, M., Jian, L.: Construction of controlled quantum counter. Chin. J. Quantum Electron. 20(1), 47-50 (2003)
[35] Wang, D., Liu, Z.H., Zhu, W.N., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302-306 (2012)
[36] Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833-2860 (2013) · Zbl 1283.81042 · doi:10.1007/s11128-013-0567-z
[37] Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526-537 (2015) · Zbl 1312.81045 · doi:10.1007/s10773-014-2245-z
[38] Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129-2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[39] Enayatifar, R., Abdullah, A.H., Lee, M.: A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption. Opt. Lasers Eng. 51(9), 1066-1077 (2013) · doi:10.1016/j.optlaseng.2013.03.010
[40] Li, J., Zheng, T., Liu, Q., et al.: Image encryption with two-step-only quadrature phase-shifting digital holography. Optik-Int. J. Light Electron. Opt. 123 (18), 1605-1608 (2012) · doi:10.1016/j.ijleo.2011.08.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.