×

Hierarchical joint remote state preparation in noisy environment. (English) Zbl 1387.81034

Summary: A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver’s port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state are concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued, all the receivers do not possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher-power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower-power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence

References:

[1] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325-328 (1997) · doi:10.1103/PhysRevLett.79.325
[2] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994) · Zbl 1005.11506
[3] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008) · Zbl 1049.81015
[4] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175-179 (1984) · Zbl 1306.81030
[5] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[6] Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013) · Zbl 1280.81002
[7] Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000) · doi:10.1103/PhysRevLett.85.441
[8] Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998) · doi:10.1103/PhysRevA.58.4394
[9] Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389-403 (2011) · Zbl 1216.81042 · doi:10.1142/S0219749911007368
[10] Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[11] Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196-1199 (2010) · doi:10.1016/j.optcom.2009.11.015
[12] Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337-1344 (2013) · Zbl 1292.81019 · doi:10.1016/j.physleta.2013.04.010
[13] Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000) · doi:10.1103/PhysRevA.63.014302
[14] Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Zhan, X.-G., You, K.-M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49, 2691-2697 (2010) · Zbl 1203.81050 · doi:10.1007/s10773-010-0461-8
[15] Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011) · doi:10.1088/0953-4075/44/3/035505
[16] Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143-3154 (2015) · Zbl 1325.81069 · doi:10.1007/s10773-015-2552-z
[17] An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008) · doi:10.1088/0953-4075/41/9/095501
[18] Peng, J.-Y., Luo, M.-X., Mo, Z.-W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325-2342 (2013) · Zbl 1270.81047 · doi:10.1007/s11128-013-0530-z
[19] Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483-4487 (2010) · Zbl 1238.81048 · doi:10.1016/j.physleta.2010.09.013
[20] An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113-4117 (2010) · doi:10.1016/j.optcom.2010.06.016
[21] An, N.B., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035009 (2011) · doi:10.1088/2043-6262/2/3/035009
[22] Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441-3464 (2015) · Zbl 1325.81039 · doi:10.1007/s11128-015-1038-5
[23] Luo, M.-X., Deng, Y., Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279-294 (2013) · Zbl 1263.81083 · doi:10.1007/s11128-012-0374-y
[24] Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285-288 (2006) · doi:10.1016/j.physleta.2006.02.050
[25] Ma, P.-C., Zhan, Y.-B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008) · doi:10.1088/1674-1056/17/2/017
[26] Ma, P.-C., Zhan, Y.-B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640-2643 (2010) · doi:10.1016/j.optcom.2010.02.034
[27] Zhan, Y.-B., Fu, H., Li, X.-W., Ma, P.-C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615-2622 (2013) · Zbl 1274.81037 · doi:10.1007/s10773-013-1549-8
[28] Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005) · doi:10.1103/PhysRevLett.94.150502
[29] Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phy. Rev. A 76, 022308 (2007) · doi:10.1103/PhysRevA.76.022308
[30] Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Remote state preparation of a photonic quantum state via quantum teleportation. Appl. Phys. B 115, 541-546 (2014) · doi:10.1007/s00340-013-5635-7
[31] Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005) · doi:10.1103/PhysRevA.72.012315
[32] Rådmark, M., Wieśniak, M., Żukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88, 032304 (2013) · doi:10.1103/PhysRevA.88.032304
[33] Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271-276 (2003) · doi:10.1016/S0375-9601(02)01604-3
[34] Wang, M.M., Wang, W., Chen, J.G., et al.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14, 4211-4224 (2015) · Zbl 1327.81172 · doi:10.1007/s11128-015-1103-0
[35] Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236-2245 (2014) · Zbl 1298.81036 · doi:10.1007/s10773-014-2024-x
[36] Lu, C.-Y., Gao, W.-B., Zhang, J., Zhou, X.-Q., Yang, T., Pan, J.-W.: Experimental quantum coding against qubit loss error. Proc. Natl. Acad. Sci. 105, 11050-11054 (2008) · doi:10.1073/pnas.0800740105
[37] Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Ż ukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012) · doi:10.1103/RevModPhys.84.777
[38] Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703-1718 (2016) · Zbl 1338.81173 · doi:10.1007/s11128-015-1207-6
[39] Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599-2616 (2015) · Zbl 1327.81171 · doi:10.1007/s11128-015-0987-z
[40] Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929-945 (2016) · Zbl 1333.81080 · doi:10.1007/s11128-015-1194-7
[41] Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997) · Zbl 1079.81514 · doi:10.1103/PhysRevLett.79.3306
[42] Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004) · doi:10.1103/PhysRevLett.92.107901
[43] Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007) · Zbl 1156.81353 · doi:10.1103/PhysRevA.75.044305
[44] Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017) · Zbl 1373.81121 · doi:10.1007/s11128-017-1594-y
[45] Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015) · doi:10.1103/PhysRevA.92.012338
[46] Henderson, L., Hardy, L., Vedral, V.: Two-state teleportation. Phys. Rev. A 61, 062306 (2000) · doi:10.1103/PhysRevA.61.062306
[47] Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16, 76 (2017) · Zbl 1373.81119 · doi:10.1007/s11128-017-1526-x
[48] Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology (1998) · Zbl 1156.81353
[49] Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003) · doi:10.1088/1367-2630/5/1/136
[50] Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008) · doi:10.1103/PhysRevA.77.012318
[51] Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261-286 (2015) · Zbl 1343.81151 · doi:10.1016/j.aop.2015.07.029
[52] Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681-4710 (2016) · Zbl 1357.81078 · doi:10.1007/s11128-016-1396-7
[53] Chiuri, A., Rosati, V., Vallone, G., Pádua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett. 107, 253602 (2011) · doi:10.1103/PhysRevLett.107.253602
[54] Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001) · doi:10.1103/PhysRevA.64.022309
[55] Fern, J., Whaley, K.B.: Lower bounds on the nonzero capacity of Pauli channels. Phys. Rev. A 78, 062335 (2008) · doi:10.1103/PhysRevA.78.062335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.