×

On monoids in the category of sets and relations. (English) Zbl 1387.81022

Summary: The category \(\mathbf{Rel}\) is the category of sets (objects) and relations (morphisms). Equipped with the direct product of sets, \(\mathbf{Rel}\) is a monoidal category. Moreover, \(\mathbf{Rel}\) is a locally posetal 2-category, since every homset \(\mathbf{Rel}(A,B)\) is a poset with respect to inclusion. We examine the 2-category of monoids \(\mathbf{RelMon}\) in this category. The morphism we use are lax. This category includes, as subcategories, various interesting classes: hypergroups, partial monoids (which include various types of quantum logics, for example effect algebras) and small categories. We show how the 2-categorical structure gives rise to several previously defined notions in these categories, for example certain types of congruence relations on generalized effect algebras. This explains where these definitions come from.

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets
06F05 Ordered semigroups and monoids
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)

References:

[1] Abramsky, S.; Coecke, B.; Engesser, K. (ed.); Gabbay, D. M (ed.); Lehmann, D. (ed.), Categorical Quantum Mechanics (2009)
[2] Awodey, S.: Category Theory. Number 49 in Oxford Logic Guides. Oxford University Press (2006)
[3] Barr, M.: Relational algebras, pp 39-55. Springer Berlin Heidelberg, Berlin (1970) · Zbl 0204.33202
[4] Bénabou, J., Introduction to bicategories (1967) · Zbl 0165.33001 · doi:10.1007/BFb0074298
[5] Bush, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer-Verlag, Berlin (1995) · Zbl 0863.60106
[6] Bénabou, J.: Catégories relatives. C.R. Acad. Sci. Paris 260, 3824-3827 (1965) · Zbl 0136.00702
[7] Chevalier, G., Pulmannová, S.: Some ideal lattices in partial abelian monoids and effect algebras. Order 17, 75-92 (2000) · Zbl 0960.03053 · doi:10.1023/A:1006423311104
[8] Contreras, I.: Groupoids, Frobenius algebras and Poisson sigma models. In: Mathematical Aspects of Quantum Field Theories pp. 413-426. Springer (2015) · Zbl 1315.81097
[9] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht and Ister Science, Bratislava (2000) · Zbl 0987.81005
[10] Ehresmann, C.: Catégories structurées. Ann. Sci. École Norm. Sup. 80(3), 349-426 (1963) · Zbl 0128.02002 · doi:10.24033/asens.1125
[11] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325-1346 (1994) · Zbl 1213.06004 · doi:10.1007/BF02283036
[12] Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19, 931-945 (1989) · doi:10.1007/BF01889307
[13] Goodearl, K. R.: Partially ordered abelian groups with interpolation. Amer. Math. Soc, Providence (1986) · Zbl 0589.06008
[14] Grätzer, G.: General Lattice Theory. Birkhäuser, second edition (1998) · Zbl 1375.18001
[15] Heunen, C., Contreras, I., Cattaneo, A. S.: Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra 217, 114-124 (2013) · Zbl 1271.18004 · doi:10.1016/j.jpaa.2012.04.002
[16] Heunen, C., Karvonen, M.: Monads on dagger categories. Theory and Applications of Categories 31, 1016-1043 (2016) · Zbl 1378.18003
[17] Heunen, C., Tull, S.: Categories of relations as models of quantum theory. In: Quantum Physics and Logic 2015 volume 195 of Electronic Proceedings in Theoretical Computer Science, pp. 247-261 (2015) · Zbl 1477.81008
[18] Jenča, G., Pulmannová, S.: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra univ 47, 443-477 (2002) · Zbl 1063.06011 · doi:10.1007/s00012-002-8199-7
[19] Kelly, G. M., Street, R.: Review of the elements of 2-categories. In Category seminar, pp. 75-103. Springer (1974) · Zbl 0128.02002
[20] Kelly, M.: Basic concepts of enriched category theory, volume 64. CUP Archive (1982) · Zbl 0478.18005
[21] Kenney, T., Paré, R.: Categories as monoids in Span, Rel and Sup. Cahiers de topologie et géométrie différentielle catégoriques 52(3), 209-240 (2011) · Zbl 1242.18003
[22] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21-34 (1994) · Zbl 0789.03048
[23] Lack, S.: A 2-categories companion. In: Towards higher categories, pp. 105-191. Springer (2010) · Zbl 1223.18003
[24] Lane, S. M.: Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer-Verlag (1971) · Zbl 0789.03048
[25] Tom Leinster: Higher operads, higher categories, volume 298. Cambridge University Press (2004) · Zbl 1160.18001
[26] Loomis, L. H.: The lattice theoretic background of the dimension theory of operator algebras. Memoirs of the AMS, 18 (1955) · Zbl 0067.08702
[27] Ludwig, G.: Foundations of Quantum Mechanics. Springer-Verlag, Berlin (1983) · Zbl 0509.46057 · doi:10.1007/978-3-642-86751-4
[28] Pavlovic, D., Seidel, P.-M.: (modular) effect algebras are equivalent to (Frobenius) antispecial algebras. In: Ross Duncan and Chris Heunen, editors, Proceedings 13th International Conference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June 2016, volume 236 of Electronic Proceedings in Theoretical Computer Science, pp. 145-160. Open Publishing Association (2017) · Zbl 1486.03117
[29] Ross Street: The formal theory of monads. Journal of Pure and Applied Algebra 2(2), 149-168 (1972) · Zbl 0241.18003 · doi:10.1016/0022-4049(72)90019-9
[30] Wall, H. S.: Hypergroups. American Journal of Mathematics 59(1), 77-98 (1937) · Zbl 0016.10302 · doi:10.2307/2371563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.